Menu Close

Question-62340




Question Number 62340 by Tawa1 last updated on 19/Jun/19
Commented by maxmathsup by imad last updated on 20/Jun/19
3) f(x)+xf(−x) =x ⇒f(−x)−xf(x) =−x   we get the systeme   { ((f(x)+xf(−x) =x)),((xf(x)−f(−x)=x       (with unknown f(x) and f(−x)))) :}  Δ = determinant (((1        x)),((x         −1)))=−1−x^2   f(x) =(Δ_(f(x)) /Δ)       we have Δ_(f(x)) =  determinant (((x        x)),((x       −1)))=−x−x^2  ⇒f(x)=((−x−x^2 )/(−1−x^2 )) =((x^2  +x)/(x^2  +1))  ⇒f(x) =((x^2  +x)/(x^2  +1))
$$\left.\mathrm{3}\right)\:{f}\left({x}\right)+{xf}\left(−{x}\right)\:={x}\:\Rightarrow{f}\left(−{x}\right)−{xf}\left({x}\right)\:=−{x}\:\:\:{we}\:{get}\:{the}\:{systeme} \\ $$$$\begin{cases}{{f}\left({x}\right)+{xf}\left(−{x}\right)\:={x}}\\{{xf}\left({x}\right)−{f}\left(−{x}\right)={x}\:\:\:\:\:\:\:\left({with}\:{unknown}\:{f}\left({x}\right)\:{and}\:{f}\left(−{x}\right)\right)}\end{cases} \\ $$$$\Delta\:=\begin{vmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:{x}}\\{{x}\:\:\:\:\:\:\:\:\:−\mathrm{1}}\end{vmatrix}=−\mathrm{1}−{x}^{\mathrm{2}} \\ $$$${f}\left({x}\right)\:=\frac{\Delta_{{f}\left({x}\right)} }{\Delta}\:\:\:\:\:\:\:{we}\:{have}\:\Delta_{{f}\left({x}\right)} =\:\begin{vmatrix}{{x}\:\:\:\:\:\:\:\:{x}}\\{{x}\:\:\:\:\:\:\:−\mathrm{1}}\end{vmatrix}=−{x}−{x}^{\mathrm{2}} \:\Rightarrow{f}\left({x}\right)=\frac{−{x}−{x}^{\mathrm{2}} }{−\mathrm{1}−{x}^{\mathrm{2}} }\:=\frac{{x}^{\mathrm{2}} \:+{x}}{{x}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$$\Rightarrow{f}\left({x}\right)\:=\frac{{x}^{\mathrm{2}} \:+{x}}{{x}^{\mathrm{2}} \:+\mathrm{1}} \\ $$
Commented by Tawa1 last updated on 20/Jun/19
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by prof Abdo imad last updated on 20/Jun/19
you are welcome.
$${you}\:{are}\:{welcome}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *