Menu Close

Question-62517




Question Number 62517 by Tawa1 last updated on 22/Jun/19
Commented by $@ty@m last updated on 22/Jun/19
what is meant by BC= ((3),(1) )   pl. clarify this notation.
$${what}\:{is}\:{meant}\:{by}\:{BC}=\begin{pmatrix}{\mathrm{3}}\\{\mathrm{1}}\end{pmatrix}\: \\ $$$${pl}.\:{clarify}\:{this}\:{notation}. \\ $$
Commented by Prithwish sen last updated on 22/Jun/19
I think it is   BC = 3i^�^�  +1j^�
$$\mathrm{I}\:\mathrm{think}\:\mathrm{it}\:\mathrm{is}\: \\ $$$$\mathrm{BC}\:=\:\mathrm{3}\hat {\boldsymbol{\mathrm{i}}}+\mathrm{1}\hat {\boldsymbol{\mathrm{j}}} \\ $$
Answered by tanmay last updated on 22/Jun/19
Two vectors P^→  and Q^→   are ∥ to each other if   only if P^→ =λQ^→   now here ..BC^→ =3i+j  DA^→ =−3i−j  so BC^→ =(−1)DA^→   hence BC^→ ∥ DA^→   again..  BC^→ =OC^→ −OB^→   CD^→ =OD^→ −OC^→   DA^→ =OA^→ −OD^→   Add them  BC^→ +CD^→ +DA^→ =OA^→ −OB^→   but look here OA^→ −OB^→ =BA^→   so BA^→ =(3i+j)+(−i−2j)+(−3i−j)  BA^→ =−i−2j      AB^→ =i+2j  now look  AB^→ =i+2j  and CD^→ =−i−2j  so AB^→ =(−1)×CD^→   hence AB^→ ∥  CD^→   so ABCD is ∥gm
$${Two}\:{vectors}\:\overset{\rightarrow} {{P}}\:{and}\:\overset{\rightarrow} {{Q}}\:\:{are}\:\parallel\:{to}\:{each}\:{other}\:{if}\: \\ $$$${only}\:{if}\:\overset{\rightarrow} {{P}}=\lambda\overset{\rightarrow} {{Q}} \\ $$$${now}\:{here}\:..{B}\overset{\rightarrow} {{C}}=\mathrm{3}{i}+{j}\:\:{D}\overset{\rightarrow} {{A}}=−\mathrm{3}{i}−{j} \\ $$$${so}\:{B}\overset{\rightarrow} {{C}}=\left(−\mathrm{1}\right){D}\overset{\rightarrow} {{A}}\:\:{hence}\:{B}\overset{\rightarrow} {{C}}\parallel\:{D}\overset{\rightarrow} {{A}} \\ $$$${again}.. \\ $$$${B}\overset{\rightarrow} {{C}}={O}\overset{\rightarrow} {{C}}−{O}\overset{\rightarrow} {{B}} \\ $$$${C}\overset{\rightarrow} {{D}}={O}\overset{\rightarrow} {{D}}−{O}\overset{\rightarrow} {{C}} \\ $$$${D}\overset{\rightarrow} {{A}}={O}\overset{\rightarrow} {{A}}−{O}\overset{\rightarrow} {{D}} \\ $$$${Add}\:{them} \\ $$$${B}\overset{\rightarrow} {{C}}+{C}\overset{\rightarrow} {{D}}+{D}\overset{\rightarrow} {{A}}={O}\overset{\rightarrow} {{A}}−{O}\overset{\rightarrow} {{B}} \\ $$$${but}\:{look}\:{here}\:{O}\overset{\rightarrow} {{A}}−{O}\overset{\rightarrow} {{B}}={B}\overset{\rightarrow} {{A}} \\ $$$${so}\:{B}\overset{\rightarrow} {{A}}=\left(\mathrm{3}{i}+{j}\right)+\left(−{i}−\mathrm{2}{j}\right)+\left(−\mathrm{3}{i}−{j}\right) \\ $$$${B}\overset{\rightarrow} {{A}}=−{i}−\mathrm{2}{j}\:\:\:\:\:\:{A}\overset{\rightarrow} {{B}}={i}+\mathrm{2}{j} \\ $$$${now}\:{look}\:\:{A}\overset{\rightarrow} {{B}}={i}+\mathrm{2}{j}\:\:{and}\:{C}\overset{\rightarrow} {{D}}=−{i}−\mathrm{2}{j} \\ $$$${so}\:{A}\overset{\rightarrow} {{B}}=\left(−\mathrm{1}\right)×{C}\overset{\rightarrow} {{D}} \\ $$$${hence}\:{A}\overset{\rightarrow} {{B}}\parallel\:\:{C}\overset{\rightarrow} {{D}} \\ $$$${so}\:{ABCD}\:{is}\:\parallel{gm} \\ $$$$ \\ $$
Commented by Tawa1 last updated on 22/Jun/19
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by $@ty@m last updated on 22/Jun/19
∵BC^→ =−DA^→   ⇒BC∥AD ...(i)  BA^→ =BC^→ +CD^→ +DA^→ = (((−1)),((−2)) )  ∴BA^→ =CD^→   ⇒BA∥CD ...(ii)  From (i) &(ii), we conclude that  ABCD is a parallelogram.
$$\because{B}\overset{\rightarrow} {{C}}=−{D}\overset{\rightarrow} {{A}} \\ $$$$\Rightarrow{BC}\parallel{AD}\:…\left({i}\right) \\ $$$${B}\overset{\rightarrow} {{A}}={B}\overset{\rightarrow} {{C}}+{C}\overset{\rightarrow} {{D}}+{D}\overset{\rightarrow} {{A}}=\begin{pmatrix}{−\mathrm{1}}\\{−\mathrm{2}}\end{pmatrix} \\ $$$$\therefore{B}\overset{\rightarrow} {{A}}={C}\overset{\rightarrow} {{D}} \\ $$$$\Rightarrow{BA}\parallel{CD}\:…\left({ii}\right) \\ $$$${From}\:\left({i}\right)\:\&\left({ii}\right),\:{we}\:{conclude}\:{that} \\ $$$${ABCD}\:{is}\:{a}\:{parallelogram}. \\ $$
Commented by Tawa1 last updated on 22/Jun/19
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by tanmay last updated on 22/Jun/19
QR^→ =OR^→ −OQ^→ =(2i+2j)−(i+6j)=i−4j  TS^→ =OS^→ −OT^→ =(5i+4j)−(xi+yj)=(5−x)i+(4−y)j  mid point of QS=(((1+5)/2),((6+4)/2))=(3,5)  mid point RT^→ =(((2+x)/2),((2+y)/2))  so ((2+x)/2)=((1+5)/2)→x=4     ((2+y)/2)=((6+4)/2)→y=8  (x,y)=(4,8)  TS^→ =(5−4)i+(4−8)j=i−4j
$${Q}\overset{\rightarrow} {{R}}={O}\overset{\rightarrow} {{R}}−{O}\overset{\rightarrow} {{Q}}=\left(\mathrm{2}{i}+\mathrm{2}{j}\right)−\left({i}+\mathrm{6}{j}\right)={i}−\mathrm{4}{j} \\ $$$${T}\overset{\rightarrow} {{S}}={O}\overset{\rightarrow} {{S}}−{O}\overset{\rightarrow} {{T}}=\left(\mathrm{5}{i}+\mathrm{4}{j}\right)−\left({xi}+{yj}\right)=\left(\mathrm{5}−{x}\right){i}+\left(\mathrm{4}−{y}\right){j} \\ $$$${mid}\:{point}\:{of}\:{QS}=\left(\frac{\mathrm{1}+\mathrm{5}}{\mathrm{2}},\frac{\mathrm{6}+\mathrm{4}}{\mathrm{2}}\right)=\left(\mathrm{3},\mathrm{5}\right) \\ $$$${mid}\:{point}\:{R}\overset{\rightarrow} {{T}}=\left(\frac{\mathrm{2}+{x}}{\mathrm{2}},\frac{\mathrm{2}+{y}}{\mathrm{2}}\right) \\ $$$${so}\:\frac{\mathrm{2}+{x}}{\mathrm{2}}=\frac{\mathrm{1}+\mathrm{5}}{\mathrm{2}}\rightarrow{x}=\mathrm{4}\:\:\:\:\:\frac{\mathrm{2}+{y}}{\mathrm{2}}=\frac{\mathrm{6}+\mathrm{4}}{\mathrm{2}}\rightarrow{y}=\mathrm{8} \\ $$$$\left({x},{y}\right)=\left(\mathrm{4},\mathrm{8}\right) \\ $$$${T}\overset{\rightarrow} {{S}}=\left(\mathrm{5}−\mathrm{4}\right){i}+\left(\mathrm{4}−\mathrm{8}\right){j}={i}−\mathrm{4}{j} \\ $$$$ \\ $$
Commented by Tawa1 last updated on 22/Jun/19
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by tanmay last updated on 22/Jun/19
RS^→ =(5−2)i+(4−2)j=3i+2j  ∣RS^→ ∣=(√(3^2 +2^2 )) =(√(13))   cosθ=(3/( (√(13))))   sinθ=(2/( (√(13))))  RS^→ =(√(13)) (icosθ+jsinθ)
$${R}\overset{\rightarrow} {{S}}=\left(\mathrm{5}−\mathrm{2}\right){i}+\left(\mathrm{4}−\mathrm{2}\right){j}=\mathrm{3}{i}+\mathrm{2}{j} \\ $$$$\mid{R}\overset{\rightarrow} {{S}}\mid=\sqrt{\mathrm{3}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }\:=\sqrt{\mathrm{13}}\: \\ $$$${cos}\theta=\frac{\mathrm{3}}{\:\sqrt{\mathrm{13}}}\:\:\:{sin}\theta=\frac{\mathrm{2}}{\:\sqrt{\mathrm{13}}} \\ $$$${R}\overset{\rightarrow} {{S}}=\sqrt{\mathrm{13}}\:\left({icos}\theta+{jsin}\theta\right) \\ $$
Commented by Tawa1 last updated on 22/Jun/19
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *