Question Number 62839 by ajfour last updated on 25/Jun/19
Commented by ajfour last updated on 25/Jun/19
$${let}\:\theta\:{be}\:{angle}\:{between}\:{b}\:{and}\: \\ $$$${extended}\:{c}\:. \\ $$$$\left({c}+{b}\mathrm{cos}\:\theta\right)^{\mathrm{2}} +{b}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta={r}^{\mathrm{2}} \\ $$$$\left({c}+{a}\mathrm{sin}\:\theta\right)^{\mathrm{2}} +{a}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta={r}^{\mathrm{2}} \\ $$$$\Rightarrow \\ $$$$\:\:\:\:{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +\mathrm{2}{bc}\mathrm{cos}\:\theta={r}^{\mathrm{2}} \\ $$$$\:\:\:\:{a}^{\mathrm{2}} +{c}^{\mathrm{2}} +\mathrm{2}{ac}\mathrm{sin}\:\theta={r}^{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{2}{c}\left({a}\mathrm{sin}\:\theta−{b}\mathrm{cos}\:\theta\right)={b}^{\mathrm{2}} −{a}^{\mathrm{2}} \\ $$$$\mathrm{2}{c}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\mathrm{sin}\:\left(\theta−\mathrm{tan}^{−\mathrm{1}} \frac{{b}}{{a}}\right)={b}^{\mathrm{2}} −{a}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\theta=\alpha+\mathrm{sin}^{−\mathrm{1}} \frac{{p}}{{h}}\:=\:\alpha+\beta\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…..\left({I}\right) \\ $$$${but}\:{on}\:{adding} \\ $$$$\:\mathrm{2}{r}^{\mathrm{2}} =\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{c}^{\mathrm{2}} +\mathrm{2}{c}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\mathrm{sin}\:\left(\theta+\mathrm{tan}^{−\mathrm{1}} \frac{{b}}{{a}}\right) \\ $$$$\Rightarrow\:{r}^{\mathrm{2}} ={c}^{\mathrm{2}} +\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{\mathrm{2}}+\frac{{h}}{\mathrm{2}}\mathrm{sin}\:\left(\mathrm{2}\alpha+\beta\right) \\ $$$$\:\:\:\:=\:{c}^{\mathrm{2}} +\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{\mathrm{2}}+\frac{{h}}{\mathrm{2}}\left\{\frac{\mathrm{2}{ab}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }×\sqrt{\mathrm{1}−\frac{{p}^{\mathrm{2}} }{{h}^{\mathrm{2}} }}+\left(\frac{\mathrm{2}{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }−\mathrm{1}\right)\frac{{p}}{{h}}\right\} \\ $$$${r}^{\mathrm{2}} ={c}^{\mathrm{2}} +\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{\mathrm{2}}+\frac{{ab}\sqrt{{h}^{\mathrm{2}} −{p}^{\mathrm{2}} }}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }+\frac{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){p}}{\mathrm{2}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)} \\ $$$${r}^{\mathrm{2}} ={c}^{\mathrm{2}} +\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{\mathrm{2}}−\frac{\left({b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)^{\mathrm{2}} }{\mathrm{2}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)}+\frac{{ab}}{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)}\sqrt{\mathrm{4}{c}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)−\left({b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\Rightarrow\:{r}^{\mathrm{2}} ={c}^{\mathrm{2}} +\frac{\mathrm{2}{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }+\frac{{ab}}{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)}\sqrt{\mathrm{4}{c}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)−\left({b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$${r}=\sqrt{{c}^{\mathrm{2}} +\frac{\mathrm{2}{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }+\frac{{ab}}{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)}\sqrt{\mathrm{4}{c}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)−\left({b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)^{\mathrm{2}} }}\:\:. \\ $$
Commented by ajfour last updated on 25/Jun/19
$${Find}\:{radius}\:{of}\:{circle}\:{in}\:{terms}\:{of} \\ $$$${a},{b},{c}\:.\:{C}\:{is}\:{center}\:{of}\:{circle},\:{and} \\ $$$${segments}\:{of}\:{lengths}\:{a}\:{and}\:{b}\:{are} \\ $$$${perpendicular}\:{to}\:{each}\:{other}. \\ $$
Commented by behi83417@gmail.com last updated on 25/Jun/19
$$\mathrm{great}\:\mathrm{question},\mathrm{sir}\:\mathrm{Ajfour}! \\ $$$$\mathrm{waitng}\:\mathrm{for}\:\mathrm{solution}\left(\mathrm{s}\right)………. \\ $$
Answered by mr W last updated on 25/Jun/19
$${r}={radius}\:{of}\:{circle} \\ $$$$\alpha={angle}\:{between}\:{a}\:{and}\:{c} \\ $$$$\beta={angle}\:{between}\:{b}\:{and}\:{c} \\ $$$$\alpha+\beta+\frac{\pi}{\mathrm{2}}=\mathrm{2}\pi \\ $$$$\Rightarrow\alpha=\mathrm{2}\pi−\left(\frac{\pi}{\mathrm{2}}+\beta\right) \\ $$$$\Rightarrow\mathrm{cos}\:\alpha=−\mathrm{sin}\:\beta \\ $$$$\Rightarrow\mathrm{cos}^{\mathrm{2}} \:\alpha+\mathrm{cos}^{\mathrm{2}} \:\beta=\mathrm{1} \\ $$$$\mathrm{cos}\:\alpha=\frac{{a}^{\mathrm{2}} +{c}^{\mathrm{2}} −{r}^{\mathrm{2}} }{\mathrm{2}{ac}} \\ $$$$\mathrm{cos}\:\beta=\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{r}^{\mathrm{2}} }{\mathrm{2}{bc}} \\ $$$$\Rightarrow\left(\frac{{a}^{\mathrm{2}} +{c}^{\mathrm{2}} −{r}^{\mathrm{2}} }{\mathrm{2}{ac}}\right)^{\mathrm{2}} +\left(\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{r}^{\mathrm{2}} }{\mathrm{2}{bc}}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$${b}^{\mathrm{2}} \left[{a}^{\mathrm{4}} +\mathrm{2}{a}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{4}} −\mathrm{2}\left({a}^{\mathrm{2}} +{c}^{\mathrm{2}} \right){r}^{\mathrm{2}} +{r}^{\mathrm{4}} \right]+{a}^{\mathrm{2}} \left[{b}^{\mathrm{4}} +\mathrm{2}{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{4}} −\mathrm{2}\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right){r}^{\mathrm{2}} +{r}^{\mathrm{4}} \right]=\mathrm{4}{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} \\ $$$$\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){r}^{\mathrm{4}} −\mathrm{2}\left[\mathrm{2}{a}^{\mathrm{2}} {b}^{\mathrm{2}} +\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){c}^{\mathrm{2}} \right]{r}^{\mathrm{2}} +\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\left({a}^{\mathrm{2}} {b}^{\mathrm{2}} +{c}^{\mathrm{4}} \right)=\mathrm{0} \\ $$$$\Rightarrow{r}^{\mathrm{2}} =\frac{\mathrm{2}{a}^{\mathrm{2}} {b}^{\mathrm{2}} +\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){c}^{\mathrm{2}} +\sqrt{\left[\mathrm{2}{a}^{\mathrm{2}} {b}^{\mathrm{2}} +\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){c}^{\mathrm{2}} \right]^{\mathrm{2}} −\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)^{\mathrm{2}} \left({a}^{\mathrm{2}} {b}^{\mathrm{2}} +{c}^{\mathrm{4}} \right)}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$\Rightarrow{r}^{\mathrm{2}} =\frac{\mathrm{2}{a}^{\mathrm{2}} {b}^{\mathrm{2}} +\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){c}^{\mathrm{2}} +{ab}\sqrt{\mathrm{4}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){c}^{\mathrm{2}} −\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)^{\mathrm{2}} }}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$\Rightarrow{r}=\sqrt{\frac{\mathrm{2}{a}^{\mathrm{2}} {b}^{\mathrm{2}} +\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){c}^{\mathrm{2}} +{ab}\sqrt{\mathrm{4}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){c}^{\mathrm{2}} −\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)^{\mathrm{2}} }}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }} \\ $$
Commented by ajfour last updated on 25/Jun/19
$${Too}\:{good}\:{Sir}.\:{Thanks}\:{for}\:{confirming}. \\ $$