Question Number 62850 by ajfour last updated on 25/Jun/19
Commented by ajfour last updated on 25/Jun/19
$${Find}\:{possible}\:{values}\:{of}\:{side}\:\boldsymbol{{s}}\:{of} \\ $$$${equilateral}\:\bigtriangleup{PQR}\:{in}\:{terms}\:{of} \\ $$$${a}\:{and}\:{b}.\left({for}\:{example}\:{let}\:{a}=\mathrm{4},\:{b}=\mathrm{3}\right). \\ $$
Answered by mr W last updated on 26/Jun/19
$${Q}\left({u},\mathrm{0}\right) \\ $$$${R}\left({v},\mathrm{0}\right) \\ $$$${t}={s}^{\mathrm{2}} =\left({u}+{a}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} =\left({v}+{b}\right)^{\mathrm{2}} +{a}^{\mathrm{2}} ={u}^{\mathrm{2}} +{v}^{\mathrm{2}} \\ $$$$\Rightarrow{u}=\sqrt{{t}−{b}^{\mathrm{2}} }−{a} \\ $$$$\Rightarrow{v}=\sqrt{{t}−{a}^{\mathrm{2}} }−{b} \\ $$$$\Rightarrow{t}−{b}^{\mathrm{2}} +{a}^{\mathrm{2}} −\mathrm{2}{a}\sqrt{{t}−{b}^{\mathrm{2}} }+{t}−{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{b}\sqrt{{t}−{a}^{\mathrm{2}} }={t} \\ $$$$\Rightarrow{t}−\mathrm{2}{a}\sqrt{{t}−{b}^{\mathrm{2}} }=\mathrm{2}{b}\sqrt{{t}−{a}^{\mathrm{2}} } \\ $$$$\Rightarrow{t}^{\mathrm{2}} −\mathrm{4}{at}\sqrt{{t}−{b}^{\mathrm{2}} }+\mathrm{4}{a}^{\mathrm{2}} \left({t}−{b}^{\mathrm{2}} \right)=\mathrm{4}{b}^{\mathrm{2}} \left({t}−{a}^{\mathrm{2}} \right) \\ $$$$\Rightarrow{t}+\mathrm{4}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)=\mathrm{4}{a}\sqrt{{t}−{b}^{\mathrm{2}} } \\ $$$$\Rightarrow{t}^{\mathrm{2}} +\mathrm{8}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){t}+\mathrm{16}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)^{\mathrm{2}} =\mathrm{16}{a}^{\mathrm{2}} \left({t}−{b}^{\mathrm{2}} \right) \\ $$$$\Rightarrow{t}^{\mathrm{2}} −\mathrm{8}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){t}+\mathrm{16}\left[\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)^{\mathrm{2}} +{a}^{\mathrm{2}} {b}^{\mathrm{2}} \right]=\mathrm{0} \\ $$$$\Rightarrow{t}=\mathrm{4}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\pm\sqrt{\mathrm{16}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{16}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{16}{a}^{\mathrm{2}} {b}^{\mathrm{2}} } \\ $$$$\Rightarrow{t}=\mathrm{4}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \pm\sqrt{\mathrm{3}}{ab}\right) \\ $$$$\Rightarrow{s}=\mathrm{2}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} \pm\sqrt{\mathrm{3}}{ab}} \\ $$
Commented by ajfour last updated on 26/Jun/19
$${Thanks}\:{Sir},\:{you}\:{made}\:{it}\:{very}\:{easy}. \\ $$$${how}\:{many}\:{values}\:{for}\:{s}\:{if}, \\ $$$${u},\:{v}\:\in\mathbb{R}\:? \\ $$
Commented by mr W last updated on 26/Jun/19
$${i}\:{think}\:{there}\:{are}\:{always}\:\mathrm{2}\:{values}\:{for}\:{s}\: \\ $$$${if}\:{ab}\neq\mathrm{0}. \\ $$
Commented by ajfour last updated on 26/Jun/19
yes sir, i am inclined to believe it.