Menu Close

Question-63206




Question Number 63206 by lalitchand last updated on 30/Jun/19
Commented by lalitchand last updated on 30/Jun/19
question number 8
$$\mathrm{question}\:\mathrm{number}\:\mathrm{8} \\ $$
Answered by arcana last updated on 01/Jul/19
sea E el punto de interseccion entre  los segmentos DB y AC tal que  DE^(____)  +EB^(____) =DB^(____)  ; AE^(___) +EC^(___) =AC^(___)     por hipotesis m∠BDC=m∠ACD  luego el triangulo △DEC es isosceles  ⇒DE^(___) =EC^(___)  (1)  por otro lado, m∠ACB=m∠ADB (2)  y como los angulos ∠DEA, ∠CEB  son opuestos por el vertice E entonces  ∠DEA≅∠CEB⇒m∠DEA=m∠CEB (3)    por (1), (2) y (3), △ADE=△BCE (ALA)  ⇒AE^(___) =EB^(___)   ⇒DB=DE +EB= AE+EC=AC
$$\mathrm{sea}\:\mathrm{E}\:\mathrm{el}\:\mathrm{punto}\:\mathrm{de}\:\mathrm{interseccion}\:\mathrm{entre} \\ $$$$\mathrm{los}\:\mathrm{segmentos}\:\mathrm{DB}\:\mathrm{y}\:\mathrm{AC}\:\mathrm{tal}\:\mathrm{que} \\ $$$$\overset{\_\_\_\_} {\mathrm{DE}}\:+\overset{\_\_\_\_} {\mathrm{EB}}=\overset{\_\_\_\_} {\mathrm{DB}}\:;\:\overset{\_\_\_} {\mathrm{AE}}+\overset{\_\_\_} {\mathrm{EC}}=\overset{\_\_\_} {\mathrm{AC}} \\ $$$$ \\ $$$$\mathrm{por}\:\mathrm{hipotesis}\:{m}\angle\mathrm{BDC}={m}\angle\mathrm{ACD} \\ $$$$\mathrm{luego}\:\mathrm{el}\:\mathrm{triangulo}\:\bigtriangleup\mathrm{DEC}\:\mathrm{es}\:\mathrm{isosceles} \\ $$$$\Rightarrow\overset{\_\_\_} {\mathrm{DE}}=\overset{\_\_\_} {\mathrm{EC}}\:\left(\mathrm{1}\right) \\ $$$$\mathrm{por}\:\mathrm{otro}\:\mathrm{lado},\:{m}\angle\mathrm{ACB}={m}\angle\mathrm{ADB}\:\left(\mathrm{2}\right) \\ $$$$\mathrm{y}\:\mathrm{como}\:\mathrm{los}\:\mathrm{angulos}\:\angle\mathrm{DEA},\:\angle\mathrm{CEB} \\ $$$$\mathrm{son}\:\mathrm{opuestos}\:\mathrm{por}\:\mathrm{el}\:\mathrm{vertice}\:\mathrm{E}\:\mathrm{entonces} \\ $$$$\angle\mathrm{DEA}\cong\angle\mathrm{CEB}\Rightarrow{m}\angle\mathrm{DEA}={m}\angle\mathrm{CEB}\:\left(\mathrm{3}\right) \\ $$$$ \\ $$$$\mathrm{por}\:\left(\mathrm{1}\right),\:\left(\mathrm{2}\right)\:\mathrm{y}\:\left(\mathrm{3}\right),\:\bigtriangleup\mathrm{ADE}=\bigtriangleup\mathrm{BCE}\:\left(\mathrm{ALA}\right) \\ $$$$\Rightarrow\overset{\_\_\_} {\mathrm{AE}}=\overset{\_\_\_} {\mathrm{EB}} \\ $$$$\Rightarrow\mathrm{DB}=\mathrm{DE}\:+\mathrm{EB}=\:\mathrm{AE}+\mathrm{EC}=\mathrm{AC} \\ $$$$ \\ $$
Commented by lalitchand last updated on 01/Jul/19
 Question nmbr 8 not 7
$$\:\mathrm{Question}\:\mathrm{nmbr}\:\mathrm{8}\:\mathrm{not}\:\mathrm{7} \\ $$
Commented by arcana last updated on 01/Jul/19
its the answer question8
$$\mathrm{its}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{question8} \\ $$
Commented by arcana last updated on 01/Jul/19
Commented by lalitchand last updated on 01/Jul/19
thanks you  i understand
$$\mathrm{thanks}\:\mathrm{you}\:\:\mathrm{i}\:\mathrm{understand} \\ $$
Commented by lalitchand last updated on 01/Jul/19
Can you solve 10 number.. i have recently   posted
$$\mathrm{Can}\:\mathrm{you}\:\mathrm{solve}\:\mathrm{10}\:\mathrm{number}..\:\mathrm{i}\:\mathrm{have}\:\mathrm{recently}\: \\ $$$$\mathrm{posted} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *