Menu Close

Question-63336




Question Number 63336 by ajfour last updated on 02/Jul/19
Commented by ajfour last updated on 02/Jul/19
Find the equation of the parabola  in the form:   y=Ax^2 +C .
Findtheequationoftheparabolaintheform:y=Ax2+C.
Answered by mr W last updated on 07/Jul/19
y=Ax^2 +C  y′=2Ax  P[a(1+cos θ), a(1−sin θ)]  tan θ=(1/(2Aa(1+cos θ)))  let t=tan (θ/2)  ((2t)/(1−t^2 ))=(1/(2Aa(1+((1−t^2 )/(1+t^2 )))))  ((2t)/(1−t^2 ))=((1+t^2 )/(4Aa))  ⇒t^4 +8Aat−1=0  ⇒8A=((1−t^4 )/(at))  a(1−sin θ)=Aa^2 (1+cos θ)^2 +C  a(((1−t)^2 )/(1+t^2 ))=4Aa^2 (1/((1+t^2 )^2 ))+C    ...(i)    Q[b(1+cos ϕ), −b(1+sin ϕ)]  tan ϕ=(1/(2Ab(1+cos ϕ)))  let s=tan (ϕ/2)  ⇒s^4 +8Abs−1=0  ⇒8A=((1−s^4 )/(bs))    −b(1+sin ϕ)=Ab^2 (1+cos ϕ)^2 +C  −b(((1+s)^2 )/(1+s^2 ))=4Ab^2 (1/((1+s^2 )^2 ))+C   ...(ii)    (i)−(ii):  a(((1−t)^2 )/(1+t^2 ))+b(((1+s)^2 )/(1+s^2 ))=((1−t^4 )/(2at))[(a^2 /((1+t^2 )^2 ))−(b^2 /((1+s^2 )^2 ))]   ...(iii)  ((1−t^4 )/(at))=((1−s^4 )/(bs))   ...(iv)  ......  example:  a=5, b=4  ⇒t=tan (θ/2)=0.10001  ⇒s=tan (ϕ/2)=0.12489
y=Ax2+Cy=2AxP[a(1+cosθ),a(1sinθ)]tanθ=12Aa(1+cosθ)lett=tanθ22t1t2=12Aa(1+1t21+t2)2t1t2=1+t24Aat4+8Aat1=08A=1t4ata(1sinθ)=Aa2(1+cosθ)2+Ca(1t)21+t2=4Aa21(1+t2)2+C(i)Q[b(1+cosφ),b(1+sinφ)]tanφ=12Ab(1+cosφ)lets=tanφ2s4+8Abs1=08A=1s4bsb(1+sinφ)=Ab2(1+cosφ)2+Cb(1+s)21+s2=4Ab21(1+s2)2+C(ii)(i)(ii):a(1t)21+t2+b(1+s)21+s2=1t42at[a2(1+t2)2b2(1+s2)2](iii)1t4at=1s4bs(iv)example:a=5,b=4t=tanθ2=0.10001s=tanφ2=0.12489
Commented by mr W last updated on 07/Jul/19
Commented by mr W last updated on 08/Jul/19
i can not find a way to reduce the  solution to a single equation.
icannotfindawaytoreducethesolutiontoasingleequation.
Commented by ajfour last updated on 08/Jul/19
Its alright sir, but lets inquire  in some other fashion too, we  might hit luck..
Itsalrightsir,butletsinquireinsomeotherfashiontoo,wemighthitluck..
Answered by ajfour last updated on 08/Jul/19
Commented by ajfour last updated on 08/Jul/19

Leave a Reply

Your email address will not be published. Required fields are marked *