Menu Close

Question-63618




Question Number 63618 by kaivan.ahmadi last updated on 06/Jul/19
Commented by kaivan.ahmadi last updated on 06/Jul/19
i dont think   if F′P−FP=0<a then P is not inside
$${i}\:{dont}\:{think}\: \\ $$$${if}\:{F}'{P}−{FP}=\mathrm{0}<{a}\:{then}\:{P}\:{is}\:{not}\:{inside} \\ $$
Commented by kaivan.ahmadi last updated on 06/Jul/19
explain the condition that the point P  is inside the hyperbola.
$${explain}\:{the}\:{condition}\:{that}\:{the}\:{point}\:{P} \\ $$$${is}\:{inside}\:{the}\:{hyperbola}. \\ $$
Commented by kaivan.ahmadi last updated on 06/Jul/19
can we plot a tangent from the point P  to hyperbola?
$${can}\:{we}\:{plot}\:{a}\:{tangent}\:{from}\:{the}\:{point}\:{P} \\ $$$${to}\:{hyperbola}? \\ $$
Commented by Prithwish sen last updated on 06/Jul/19
If B be any point on hyperbola  then F′B∽FB =constant (say a )  ∴ then F′P − FP < a  I think.
$$\mathrm{If}\:\mathrm{B}\:\mathrm{be}\:\mathrm{any}\:\mathrm{point}\:\mathrm{on}\:\mathrm{hyperbola} \\ $$$$\mathrm{then}\:\mathrm{F}'\mathrm{B}\backsim\mathrm{FB}\:=\mathrm{constant}\:\left(\mathrm{say}\:\boldsymbol{\mathrm{a}}\:\right) \\ $$$$\therefore\:\mathrm{then}\:\mathrm{F}'\mathrm{P}\:−\:\mathrm{FP}\:<\:\mathrm{a} \\ $$$$\mathrm{I}\:\mathrm{think}. \\ $$
Commented by Prithwish sen last updated on 06/Jul/19
Try  F′P−FP> a
$$\mathrm{Try} \\ $$$$\mathrm{F}'\mathrm{P}−\mathrm{FP}>\:\mathrm{a} \\ $$
Answered by MJS last updated on 06/Jul/19
hyperbola  a, b, e>0  y=±(b/a)(√(x^2 −a^2 ))  ∣F_1 F_2 ∣=2e  H∈hyp: ∣F_1 H∣−∣F_2 H∣=2a  a^2 +b^2 =e^2   if we fix e ⇒ b=(√(e^2 −a^2 )); b>0 ⇒ a<e  y=±((√((e^2 −a^2 )(x^2 −a^2 )))/a)  for lower values of a the hyperbola becomes  steeper (or more open)  ⇒ for P on a hyperbola inside the given one  we would need a higher value of a  ⇒ ∣F_1 P∣−∣F_2 P∣>2a
$$\mathrm{hyperbola} \\ $$$${a},\:{b},\:{e}>\mathrm{0} \\ $$$${y}=\pm\frac{{b}}{{a}}\sqrt{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} } \\ $$$$\mid{F}_{\mathrm{1}} {F}_{\mathrm{2}} \mid=\mathrm{2}{e} \\ $$$${H}\in\mathrm{hyp}:\:\mid{F}_{\mathrm{1}} {H}\mid−\mid{F}_{\mathrm{2}} {H}\mid=\mathrm{2}{a} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} ={e}^{\mathrm{2}} \\ $$$$\mathrm{if}\:\mathrm{we}\:\mathrm{fix}\:{e}\:\Rightarrow\:{b}=\sqrt{{e}^{\mathrm{2}} −{a}^{\mathrm{2}} };\:{b}>\mathrm{0}\:\Rightarrow\:{a}<{e} \\ $$$${y}=\pm\frac{\sqrt{\left({e}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)}}{{a}} \\ $$$$\mathrm{for}\:\mathrm{lower}\:\mathrm{values}\:\mathrm{of}\:{a}\:\mathrm{the}\:\mathrm{hyperbola}\:\mathrm{becomes} \\ $$$$\mathrm{steeper}\:\left(\mathrm{or}\:\mathrm{more}\:\mathrm{open}\right) \\ $$$$\Rightarrow\:\mathrm{for}\:{P}\:\mathrm{on}\:\mathrm{a}\:\mathrm{hyperbola}\:\mathrm{inside}\:\mathrm{the}\:\mathrm{given}\:\mathrm{one} \\ $$$$\mathrm{we}\:\mathrm{would}\:\mathrm{need}\:\mathrm{a}\:\mathrm{higher}\:\mathrm{value}\:\mathrm{of}\:{a} \\ $$$$\Rightarrow\:\mid{F}_{\mathrm{1}} {P}\mid−\mid{F}_{\mathrm{2}} {P}\mid>\mathrm{2}{a} \\ $$
Commented by Prithwish sen last updated on 06/Jul/19
great sir . Sir please suggest something on  the solution of the problem of the comment of63574
$$\mathrm{great}\:\mathrm{sir}\:.\:\mathrm{Sir}\:\mathrm{please}\:\mathrm{suggest}\:\mathrm{something}\:\mathrm{on} \\ $$$$\mathrm{the}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\:\mathrm{problem}\:\mathrm{of}\:\mathrm{the}\:\mathrm{comment}\:\mathrm{of63574} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *