Menu Close

question-63639-again-prove-z-C-z-1-z-2-z-1-z-3-1-1-




Question Number 63784 by MJS last updated on 09/Jul/19
question 63639 again  prove:  ∀z∈C: ∣z+1∣+∣z^2 +z+1∣+∣z^3 +1∣≥1
question63639againprove:zC:z+1+z2+z+1+z3+1∣⩾1
Commented by Prithwish sen last updated on 09/Jul/19
1=∣1+z +1 + z^3 − (z^3  + z^2 ) − (z^2  + z + 1)∣  ≤ ∣1+z∣ + ∣1+z^3 ∣ + ∣z^2 ∣∣1+z∣ +∣z^2 +z + 1∣ ( ∵ ∣z_1 −z_2 ∣ ≤ ∣z_1 ∣ +∣z_2 ∣  ≤ ∣1+z∣ +∣1+z^3 ∣ + ∣ z^2 +z+1∣   = ∣1+z∣ + ∣z^2 +z+1∣ + ∣z^3 +1∣ (∵ addition  of complex numbers follow commutative law.  Hence proved.
1=∣1+z+1+z3(z3+z2)(z2+z+1)1+z+1+z3+z2∣∣1+z+z2+z+1(z1z2z1+z21+z+1+z3+z2+z+1=1+z+z2+z+1+z3+1(additionofcomplexnumbersfollowcommutativelaw.Henceproved.
Commented by Prithwish sen last updated on 09/Jul/19
please check it sir.
pleasecheckitsir.
Commented by Prithwish sen last updated on 09/Jul/19
Is it ok sir ?
Isitoksir?
Commented by mr W last updated on 09/Jul/19
how can you say:  ∣1+z∣ + ∣1+z^3 ∣ + ∣z^2 ∣∣1+z∣ +∣z^2 +z + 1∣   ≤ ∣1+z∣ +∣1+z^3 ∣ + ∣ z^2 +z+1∣   ?
howcanyousay:1+z+1+z3+z2∣∣1+z+z2+z+11+z+1+z3+z2+z+1?
Commented by MJS last updated on 10/Jul/19
so how can we solve it?  for z=−1  0+1+0≥1  for z=−(1/2)±((√3)/2)i  1+0+2≥1  for z=(1/2)±((√3)/2)i  (√3)+2+0≥1  is it enough to show that for z close to −1  the sum of the absolutes is rising in every  direction?  we can put x=−1+re^(iθ)  with −π≤θ<π and  choose any small value for r>0 ⇒  ∣z+1∣+∣z^2 +z+1∣+∣z^3 +1∣=f(θ)=  =r+(√(r^4 −2r^3 cos θ −(1−4cos^2  θ)r^2 −2rcos θ +1))+r(√(r^4 −6r^3 cos θ +3(1+4cos^2  θ)r^2 −18rcos θ +9))  (df/dθ)=rsin θ ×[some complicated term which has  no zeros for small values of r]  ⇒ our function has minima/maxima at  θ=−π∨θ=0  ⇒  { ((f(−π)=r+∣r^2 +r+1∣+r∣r^2 +3r+3∣)),((f(0)=r+∣r^2 −r+1∣+r∣r^2 −3r+3∣)) :}  in both cases the minimum is at r=0 because  r cannot be negative  ⇒ z=−1 seems to be the absolute minimum  with ∣z+1∣+∣z^2 +z+1∣+∣z^3 +1∣=1
sohowcanwesolveit?forz=10+1+01forz=12±32i1+0+21forz=12±32i3+2+01isitenoughtoshowthatforzcloseto1thesumoftheabsolutesisrisingineverydirection?wecanputx=1+reiθwithπθ<πandchooseanysmallvalueforr>0z+1+z2+z+1+z3+1∣=f(θ)==r+r42r3cosθ(14cos2θ)r22rcosθ+1+rr46r3cosθ+3(1+4cos2θ)r218rcosθ+9dfdθ=rsinθ×[somecomplicatedtermwhichhasnozerosforsmallvaluesofr]ourfunctionhasminima/maximaatθ=πθ=0{f(π)=r+r2+r+1+rr2+3r+3f(0)=r+r2r+1+rr23r+3inbothcasestheminimumisatr=0becausercannotbenegativez=1seemstobetheabsoluteminimumwithz+1+z2+z+1+z3+1∣=1
Commented by Prithwish sen last updated on 10/Jul/19
Sir is′nt the ansolute value indicate the  distance between z and the origin. If so then  why it can′t be positive all the time ?
Sirisnttheansolutevalueindicatethedistancebetweenzandtheorigin.Ifsothenwhyitcantbepositiveallthetime?

Leave a Reply

Your email address will not be published. Required fields are marked *