Menu Close

Question-63788




Question Number 63788 by rajesh4661kumar@gamil.com last updated on 09/Jul/19
Answered by mr W last updated on 09/Jul/19
a+b=6k  b+c=7k  c+a=8k  2(a+b+c)=(6+7+8)k  a+b+c=((21k)/2) with k∈R    10^n −1=4707  ⇒n=log (4707+1)≈3.673
$${a}+{b}=\mathrm{6}{k} \\ $$$${b}+{c}=\mathrm{7}{k} \\ $$$${c}+{a}=\mathrm{8}{k} \\ $$$$\mathrm{2}\left({a}+{b}+{c}\right)=\left(\mathrm{6}+\mathrm{7}+\mathrm{8}\right){k} \\ $$$${a}+{b}+{c}=\frac{\mathrm{21}{k}}{\mathrm{2}}\:{with}\:{k}\in\mathbb{R} \\ $$$$ \\ $$$$\mathrm{10}^{{n}} −\mathrm{1}=\mathrm{4707} \\ $$$$\Rightarrow{n}=\mathrm{log}\:\left(\mathrm{4707}+\mathrm{1}\right)\approx\mathrm{3}.\mathrm{673} \\ $$
Commented by Tawa1 last updated on 10/Jul/19
Weldon sir
$$\mathrm{Weldon}\:\mathrm{sir} \\ $$
Commented by Tawa1 last updated on 10/Jul/19
Sir, i have a request, please i want to start learning area of  shaded part in any shape.  Please sir give simple example to start with  and solution.  Then give me questions and i will be solving them.  Thanks sir
$$\mathrm{Sir},\:\mathrm{i}\:\mathrm{have}\:\mathrm{a}\:\mathrm{request},\:\mathrm{please}\:\mathrm{i}\:\mathrm{want}\:\mathrm{to}\:\mathrm{start}\:\mathrm{learning}\:\mathrm{area}\:\mathrm{of} \\ $$$$\mathrm{shaded}\:\mathrm{part}\:\mathrm{in}\:\mathrm{any}\:\mathrm{shape}.\:\:\mathrm{Please}\:\mathrm{sir}\:\mathrm{give}\:\mathrm{simple}\:\mathrm{example}\:\mathrm{to}\:\mathrm{start}\:\mathrm{with} \\ $$$$\mathrm{and}\:\mathrm{solution}.\:\:\mathrm{Then}\:\mathrm{give}\:\mathrm{me}\:\mathrm{questions}\:\mathrm{and}\:\mathrm{i}\:\mathrm{will}\:\mathrm{be}\:\mathrm{solving}\:\mathrm{them}. \\ $$$$\mathrm{Thanks}\:\mathrm{sir} \\ $$
Commented by mr W last updated on 11/Jul/19
there is no general mothods to solve  such questions.  i can not make  suitable questions for your  situation.
$${there}\:{is}\:{no}\:{general}\:{mothods}\:{to}\:{solve} \\ $$$${such}\:{questions}.\:\:{i}\:{can}\:{not}\:{make} \\ $$$${suitable}\:{questions}\:{for}\:{your}\:\:{situation}. \\ $$
Commented by Tawa1 last updated on 11/Jul/19
Ohh. ok. Thank you sir.
$$\mathrm{Ohh}.\:\mathrm{ok}.\:\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *