Question Number 63904 by naka3546 last updated on 11/Jul/19
Commented by Prithwish sen last updated on 13/Jul/19
$$\frac{\mathrm{6}^{\mathrm{k}} }{\left(\mathrm{3}^{\mathrm{k}} −\mathrm{2}^{\mathrm{k}} \right)\left(\mathrm{3}^{\mathrm{k}+\mathrm{1}} −\mathrm{2}^{\mathrm{k}+\mathrm{1}} \right)}\:=\:\frac{\mathrm{3}^{\mathrm{k}} }{\mathrm{3}^{\mathrm{k}} −\mathrm{2}^{\mathrm{k}} }\:−\frac{\mathrm{3}^{\mathrm{k}+\mathrm{1}} }{\mathrm{3}^{\mathrm{k}+\mathrm{1}} −\mathrm{2}^{\mathrm{k}+\mathrm{1}} } \\ $$$$\underset{\mathrm{k}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}=\:\mathrm{3}−\frac{\mathrm{3}^{\mathrm{n}+\mathrm{1}} }{\mathrm{3}^{\mathrm{n}+\mathrm{1}} −\mathrm{2}^{\mathrm{n}+\mathrm{1}} }\:=\:\mathrm{3}\:−\frac{\mathrm{1}}{\mathrm{1}−\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{n}+\mathrm{1}} } \\ $$$$\boldsymbol{\mathrm{as}}\:\boldsymbol{\mathrm{n}}\rightarrow\infty\:\Rightarrow\:\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\boldsymbol{\mathrm{n}}+\mathrm{1}} \rightarrow\mathrm{0} \\ $$$$\therefore\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{6}^{\mathrm{k}} }{\left(\mathrm{3}^{\mathrm{k}} −\mathrm{2}^{\mathrm{k}} \right)\left(\mathrm{3}^{\mathrm{k}+\mathrm{1}} −\mathrm{2}^{\mathrm{k}+\mathrm{1}} \right)}\rightarrow\mathrm{3}−\mathrm{1}\:=\:\mathrm{2} \\ $$$$\mathrm{please}\:\mathrm{check} \\ $$