Question Number 64384 by aliesam last updated on 17/Jul/19
Answered by MJS last updated on 17/Jul/19
$$\left({y}={x}\right)\cap\left({y}=\frac{{x}}{\mathrm{8}}\right)=\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix} \\ $$$$\left({y}={x}\right)\cap\left({y}=\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)=\begin{pmatrix}{\mathrm{1}}\\{\mathrm{1}}\end{pmatrix} \\ $$$$\:\:\:\:\:\left[{x}=\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:\Rightarrow\:{x}^{\mathrm{3}} =\mathrm{1}\:\Rightarrow\:{x}=\mathrm{1}\right] \\ $$$$\left({y}=\frac{{x}}{\mathrm{8}}\right)\cap\left({y}=\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)=\begin{pmatrix}{\mathrm{2}}\\{\frac{\mathrm{1}}{\mathrm{4}}}\end{pmatrix} \\ $$$$\:\:\:\:\:\left[\frac{{x}}{\mathrm{8}}=\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:\Rightarrow\:{x}^{\mathrm{3}} =\mathrm{8}\:\Rightarrow\:{x}=\mathrm{2}\right] \\ $$$$ \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{xdx}+\underset{\mathrm{1}} {\overset{\mathrm{2}} {\int}}\frac{{dx}}{{x}^{\mathrm{2}} }−\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\frac{{x}}{\mathrm{8}}{dx}=\left[\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right]_{\mathrm{0}} ^{\mathrm{1}} +\left[−\frac{\mathrm{1}}{{x}}\right]_{\mathrm{1}} ^{\mathrm{2}} −\left[\frac{{x}^{\mathrm{2}} }{\mathrm{16}}\right]_{\mathrm{0}} ^{\mathrm{2}} = \\ $$$$=\left(\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{0}\right)+\left(−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{1}}\right)−\left(\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{0}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$