Menu Close

Question-64447




Question Number 64447 by Tawa1 last updated on 18/Jul/19
Answered by som(math1967) last updated on 18/Jul/19
(4−3)(4+3)(4^2 +3^2 ).....(4^(32) +3^(32) )=4^x −3^x  ★  (4^2 −3^2 ).....(4^(32) +3^(32) )=4^x −3^x   4^(64) −3^(64) =4^x −3^x     ∴x=64  ★(4−3)=1
$$\left(\mathrm{4}−\mathrm{3}\right)\left(\mathrm{4}+\mathrm{3}\right)\left(\mathrm{4}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} \right)…..\left(\mathrm{4}^{\mathrm{32}} +\mathrm{3}^{\mathrm{32}} \right)=\mathrm{4}^{{x}} −\mathrm{3}^{{x}} \:\bigstar \\ $$$$\left(\mathrm{4}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} \right)…..\left(\mathrm{4}^{\mathrm{32}} +\mathrm{3}^{\mathrm{32}} \right)=\mathrm{4}^{{x}} −\mathrm{3}^{{x}} \\ $$$$\mathrm{4}^{\mathrm{64}} −\mathrm{3}^{\mathrm{64}} =\mathrm{4}^{{x}} −\mathrm{3}^{{x}} \\ $$$$\:\:\therefore{x}=\mathrm{64} \\ $$$$\bigstar\left(\mathrm{4}−\mathrm{3}\right)=\mathrm{1} \\ $$
Commented by Tawa1 last updated on 18/Jul/19
God bless you sir.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$
Commented by som(math1967) last updated on 18/Jul/19
1.(4+3)(4^2 +3^2 )(4^4 +3^4 )...(4^(32) +3^(32) )=4^x −3^x   (4−3)(4+3)(4^2 +3^2 )(4^4 +3^4 )...(4^(32) +3^(32) )=4^x −3^x   (4^2 −3^2 )(4^2 +3^2 )(4^4 +3^4 )...(4^(32) +3^(32) )=4^x −3^x   (4^4 −3^4 )(4^4 +3^4 )..(4^(32) +3^(32) )=4^x −3^x   (4^8 −3^8 )(4^8 +3^8 )..(4^(32) +3^(32) )=4^x −3^x   4^(64) −3^(64) =4^x −3^x
$$\mathrm{1}.\left(\mathrm{4}+\mathrm{3}\right)\left(\mathrm{4}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} \right)\left(\mathrm{4}^{\mathrm{4}} +\mathrm{3}^{\mathrm{4}} \right)…\left(\mathrm{4}^{\mathrm{32}} +\mathrm{3}^{\mathrm{32}} \right)=\mathrm{4}^{{x}} −\mathrm{3}^{{x}} \\ $$$$\left(\mathrm{4}−\mathrm{3}\right)\left(\mathrm{4}+\mathrm{3}\right)\left(\mathrm{4}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} \right)\left(\mathrm{4}^{\mathrm{4}} +\mathrm{3}^{\mathrm{4}} \right)…\left(\mathrm{4}^{\mathrm{32}} +\mathrm{3}^{\mathrm{32}} \right)=\mathrm{4}^{{x}} −\mathrm{3}^{{x}} \\ $$$$\left(\mathrm{4}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} \right)\left(\mathrm{4}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} \right)\left(\mathrm{4}^{\mathrm{4}} +\mathrm{3}^{\mathrm{4}} \right)…\left(\mathrm{4}^{\mathrm{32}} +\mathrm{3}^{\mathrm{32}} \right)=\mathrm{4}^{{x}} −\mathrm{3}^{{x}} \\ $$$$\left(\mathrm{4}^{\mathrm{4}} −\mathrm{3}^{\mathrm{4}} \right)\left(\mathrm{4}^{\mathrm{4}} +\mathrm{3}^{\mathrm{4}} \right)..\left(\mathrm{4}^{\mathrm{32}} +\mathrm{3}^{\mathrm{32}} \right)=\mathrm{4}^{{x}} −\mathrm{3}^{{x}} \\ $$$$\left(\mathrm{4}^{\mathrm{8}} −\mathrm{3}^{\mathrm{8}} \right)\left(\mathrm{4}^{\mathrm{8}} +\mathrm{3}^{\mathrm{8}} \right)..\left(\mathrm{4}^{\mathrm{32}} +\mathrm{3}^{\mathrm{32}} \right)=\mathrm{4}^{{x}} −\mathrm{3}^{{x}} \\ $$$$\mathrm{4}^{\mathrm{64}} −\mathrm{3}^{\mathrm{64}} =\mathrm{4}^{{x}} −\mathrm{3}^{{x}} \\ $$
Commented by Tawa1 last updated on 18/Jul/19
I appreciate your effort sir. God bless you.
$$\mathrm{I}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{effort}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *