Menu Close

Question-64557




Question Number 64557 by LPM last updated on 19/Jul/19
Commented by LPM last updated on 19/Jul/19
area of △ DBC
areaofDBC
Commented by Tony Lin last updated on 19/Jul/19
∠AEB=120°⇒∠EBA=30°  ∠EBC=60°⇒∠ABC=90°  ∴△ABC is 30°-60°-90° triangle  ⇒BC=(4/( (√3)))  ∵△EBC is equilateral triangle and     △AEB is isosceles triangle  ∴AE=EB=EC=(4/( (√3)))  ∠AED=60°⇒∠ADE=75°  ((AE)/(sin75°))=((DE)/(sin45°))  ((4/( (√3)))/(((√6)+(√2))/4))=((DE)/((√2)/2))  ⇒DE=((4(3−(√3)))/3)  area of △DBC  =△DEC+△EBC  =(1/2)×DE×EC×sin∠DEC+((√3)/4)×EC^2   =(1/2)×((4(3−(√3)))/3)×(4/( (√3)))×((√3)/2)+((√3)/4)×((4/( (√3))))^2   =4
AEB=120°EBA=30°EBC=60°ABC=90°ABCis30°60°90°triangleBC=43EBCisequilateraltriangleandAEBisisoscelestriangleAE=EB=EC=43AED=60°ADE=75°AEsin75°=DEsin45°436+24=DE22DE=4(33)3areaofDBC=DEC+EBC=12×DE×EC×sinDEC+34×EC2=12×4(33)3×43×32+34×(43)2=4
Commented by LPM last updated on 19/Jul/19
good
good
Answered by Kunal12588 last updated on 19/Jul/19
see ABC  tan 60° = (4/(BC))  ⇒BC=(4/3)(√3)  sin 60°=(4/(AC))  AC=(8/3)(√3)  BE=BC=EC=(4/3)(√3)  AE=AC−EC=(8/3)(√3)−(4/3)(√3)=(4/3)(√3)  ∵ AE=EC=(4/3)(√3)  ∴ ∠EBA=30°  ∠BDA=180°−75°−30°=75°  ∵∠BDA=∠DAB  AB=BD=4  DE=BD−BE=4−(4/3)(√3)=((4(3−(√3)))/3)=((4(√3)((√3)−1))/3)  ar(BCE)=((√3)/4)(BC)^2 =((√3)/4)(((4(√3))/3))^2 =((4(√3))/3)  ar(CDE)=(1/2)×EC×DE sin(∠DEC)  =(1/2)×((4(√3))/3)×((4(√3)((√3)−1))/3)×sin(180−60)  =(1/2)×((4(√3))/3)×((4(√3)((√3)−1))/3)×((√3)/2)  =((4(√3)((√3)−1))/3)  ar(DBC)=ar(CDE)+ar(BCE)  =((4(√3)((√3)−1))/3)+((4(√3))/3)  =((4(√3))/3)((√3))  ar(DBC)=4
seeABCtan60°=4BCBC=433sin60°=4ACAC=833BE=BC=EC=433AE=ACEC=833433=433AE=EC=433EBA=30°BDA=180°75°30°=75°BDA=DABAB=BD=4DE=BDBE=4433=4(33)3=43(31)3ar(BCE)=34(BC)2=34(433)2=433ar(CDE)=12×EC×DEsin(DEC)=12×433×43(31)3×sin(18060)=12×433×43(31)3×32=43(31)3ar(DBC)=ar(CDE)+ar(BCE)=43(31)3+433=433(3)ar(DBC)=4
Commented by LPM last updated on 19/Jul/19
good
good

Leave a Reply

Your email address will not be published. Required fields are marked *