Question Number 64687 by aliesam last updated on 20/Jul/19
Commented by mathmax by abdo last updated on 21/Jul/19
$${let}\:{A}\:=\int\:\:\:\frac{{e}^{\frac{−{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}}} }{{sin}^{\mathrm{2}} {x}}\:{dx}\:\Rightarrow\:{A}\:=\int\:\:\:\frac{{e}^{−\frac{{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}}} }{\frac{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}}}\:{dx} \\ $$$$=\:\mathrm{2}\:\int\:\:\:\frac{{e}^{−\frac{{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}}} }{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)}{dx}\:\:\:{changement}\:{cos}\left(\mathrm{2}{x}\right)\:={t}\:{give}\:\mathrm{2}{x}={argch}\left({t}\right) \\ $$$$={ln}\left({t}+\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}\right)\:\Rightarrow{x}\:=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({t}+\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}\right)\:\:\:\Rightarrow{dx}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\frac{\mathrm{1}+\frac{\mathrm{2}{t}}{\mathrm{2}\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}}}{{t}+\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}}\:\:\Rightarrow\:{A}\:=\mathrm{2}\int\:\:\frac{{e}^{−\frac{{t}}{\mathrm{2}}} }{\mathrm{1}−{t}}\:\:\frac{{dt}}{\mathrm{2}\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}} \\ $$$$=\:−\int\:\:\:\:\frac{{e}^{−\frac{{t}}{\mathrm{2}}} }{\left({t}−\mathrm{1}\right)\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}}{dt}\:\:\:\:{cha}\mathrm{7}{gement}\:\:\:{t}\:={ch}\left({u}\right){give} \\ $$$${A}\:=−\int\:\:\:\frac{{e}^{−\frac{{chu}}{\mathrm{2}}} }{\left({chu}−\mathrm{1}\right){shu}}\:{sh}\left({u}\right){du}\:=\:\int\:\:\:\frac{{e}^{−\frac{{chu}}{\mathrm{2}}} }{\mathrm{1}−{ch}\left({u}\right)}{du} \\ $$$$=\int\:\:\frac{{e}^{−\frac{{chu}}{\mathrm{2}}} }{\mathrm{1}−\frac{{e}^{{u}} \:+{e}^{−{u}} }{\mathrm{2}}}\:{du}\:=\int\:\:\:\frac{\mathrm{2}\:{e}^{−\frac{{chu}}{\mathrm{2}}} }{\mathrm{2}−{e}^{{u}} −{e}^{−{u}} }\:{du} \\ $$$$=\int\:\:\:\frac{\mathrm{2}{e}^{−{u}} \:{e}^{−\frac{{chu}}{\mathrm{2}}} }{\mathrm{2}{e}^{−{u}} −\mathrm{1}−{e}^{−\mathrm{2}{u}} }{du}…{be}\:{continued}…. \\ $$$$ \\ $$