Menu Close

Question-64887




Question Number 64887 by ajfour last updated on 22/Jul/19
Answered by mr W last updated on 22/Jul/19
let λ=(a/R)  cos α=((((a/2))^2 +R^2 −a^2 )/(2×(a/2)×R))=((4R^2 −3a^2 )/(4aR))=((4−3λ^2 )/(4λ))  sin (β/2)=(a/(2R))=(λ/2)  α+β=(π/2)  sin β=sin ((π/2)−α)=cos α  2×(λ/2)×(√(1−(λ^2 /4)))=((4−3λ^2 )/(4λ))  (√(1−(λ^2 /4)))=((4−3λ^2 )/(4λ^2 ))  1−(λ^2 /4)=(((4−3λ^2 )/(4λ^2 )))^2 =((16−24λ^2 +9λ^4 )/(16λ^4 ))  4−λ^2 =((16−24λ^2 +9λ^4 )/(4λ^4 ))  16λ^4 −4λ^6 =16−24λ^2 +9λ^4   let t=λ^2   ⇒t^3 −(7/4)t^2 −6t+4=0  ⇒t=λ^2 =0.598  ⇒a=λR=λ=0.7733
$${let}\:\lambda=\frac{{a}}{{R}} \\ $$$$\mathrm{cos}\:\alpha=\frac{\left(\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} +{R}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{2}×\frac{{a}}{\mathrm{2}}×{R}}=\frac{\mathrm{4}{R}^{\mathrm{2}} −\mathrm{3}{a}^{\mathrm{2}} }{\mathrm{4}{aR}}=\frac{\mathrm{4}−\mathrm{3}\lambda^{\mathrm{2}} }{\mathrm{4}\lambda} \\ $$$$\mathrm{sin}\:\frac{\beta}{\mathrm{2}}=\frac{{a}}{\mathrm{2}{R}}=\frac{\lambda}{\mathrm{2}} \\ $$$$\alpha+\beta=\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{sin}\:\beta=\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−\alpha\right)=\mathrm{cos}\:\alpha \\ $$$$\mathrm{2}×\frac{\lambda}{\mathrm{2}}×\sqrt{\mathrm{1}−\frac{\lambda^{\mathrm{2}} }{\mathrm{4}}}=\frac{\mathrm{4}−\mathrm{3}\lambda^{\mathrm{2}} }{\mathrm{4}\lambda} \\ $$$$\sqrt{\mathrm{1}−\frac{\lambda^{\mathrm{2}} }{\mathrm{4}}}=\frac{\mathrm{4}−\mathrm{3}\lambda^{\mathrm{2}} }{\mathrm{4}\lambda^{\mathrm{2}} } \\ $$$$\mathrm{1}−\frac{\lambda^{\mathrm{2}} }{\mathrm{4}}=\left(\frac{\mathrm{4}−\mathrm{3}\lambda^{\mathrm{2}} }{\mathrm{4}\lambda^{\mathrm{2}} }\right)^{\mathrm{2}} =\frac{\mathrm{16}−\mathrm{24}\lambda^{\mathrm{2}} +\mathrm{9}\lambda^{\mathrm{4}} }{\mathrm{16}\lambda^{\mathrm{4}} } \\ $$$$\mathrm{4}−\lambda^{\mathrm{2}} =\frac{\mathrm{16}−\mathrm{24}\lambda^{\mathrm{2}} +\mathrm{9}\lambda^{\mathrm{4}} }{\mathrm{4}\lambda^{\mathrm{4}} } \\ $$$$\mathrm{16}\lambda^{\mathrm{4}} −\mathrm{4}\lambda^{\mathrm{6}} =\mathrm{16}−\mathrm{24}\lambda^{\mathrm{2}} +\mathrm{9}\lambda^{\mathrm{4}} \\ $$$${let}\:{t}=\lambda^{\mathrm{2}} \\ $$$$\Rightarrow{t}^{\mathrm{3}} −\frac{\mathrm{7}}{\mathrm{4}}{t}^{\mathrm{2}} −\mathrm{6}{t}+\mathrm{4}=\mathrm{0} \\ $$$$\Rightarrow{t}=\lambda^{\mathrm{2}} =\mathrm{0}.\mathrm{598} \\ $$$$\Rightarrow{a}=\lambda{R}=\lambda=\mathrm{0}.\mathrm{7733} \\ $$
Commented by ajfour last updated on 23/Jul/19
Thanks sir, very pragmatic!
$${Thanks}\:{sir},\:{very}\:{pragmatic}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *