Question Number 64901 by LPM last updated on 23/Jul/19
Commented by LPM last updated on 23/Jul/19
$$\mathrm{KM}=? \\ $$
Commented by Tony Lin last updated on 23/Jul/19
$$\left(\mathrm{6}−{r}\right)+\left(\mathrm{8}−{r}\right)=\mathrm{10} \\ $$$$\Rightarrow{r}=\mathrm{2} \\ $$$${KM}=\left(\sqrt{\mathrm{2}}+\mathrm{1}\right){r}=\mathrm{2}\sqrt{\mathrm{2}}+\mathrm{2} \\ $$
Commented by Tawa1 last updated on 23/Jul/19
$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{understand}\:\mathrm{sir} \\ $$
Commented by Tony Lin last updated on 23/Jul/19
Commented by Tawa1 last updated on 23/Jul/19
$$\mathrm{Ohh}.\:\mathrm{i}\:\mathrm{understand}\:\mathrm{now}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by Tawa1 last updated on 23/Jul/19
$$\mathrm{Sir},\:\:\mathrm{how}\:\mathrm{do}\:\mathrm{you}\:\mathrm{get}\:\:\:\:\mathrm{6}\:−\:\mathrm{r}\:\:\:\mathrm{and}\:\:\mathrm{8}\:−\:\mathrm{r} \\ $$$$\mathrm{i}\:\mathrm{understand}\:\mathrm{other}\:\mathrm{step}\:\mathrm{sir}. \\ $$
Commented by Tony Lin last updated on 23/Jul/19
Commented by Tony Lin last updated on 23/Jul/19
$$\because\begin{cases}{{AI}={AI}}\\{\angle{ACI}=\angle{AMI}=\mathrm{90}°\:\left({RHS}\:{congruence}\right)}\\{{CI}={MI}={r}}\end{cases} \\ $$$$\therefore\bigtriangleup{ACI}\approxeq\bigtriangleup{AMI} \\ $$$$\Rightarrow{AC}={AM} \\ $$$$\because{CK}={r},{AK}=\mathrm{6} \\ $$$$\therefore\boldsymbol{{AM}}=\boldsymbol{{AC}}=\mathrm{6}−\boldsymbol{{r}} \\ $$$$\because\begin{cases}{{IB}={IB}}\\{\angle{IDB}=\angle{IMB}=\mathrm{90}°\:\left({RHS}\:{congruence}\right)}\\{{DI}={MI}}\end{cases} \\ $$$$\therefore\bigtriangleup{IDB}\approxeq\bigtriangleup{IMB} \\ $$$$\Rightarrow{DB}={MB} \\ $$$$\because{KD}={r},{KB}=\mathrm{8} \\ $$$$\therefore\boldsymbol{{MB}}=\boldsymbol{{DB}}=\mathrm{8}−\boldsymbol{{r}} \\ $$$$\because{AB}={AM}+{MB}=\mathrm{10} \\ $$$$\therefore\left(\mathrm{6}−{r}\right)+\left(\mathrm{8}−{r}\right)=\mathrm{10} \\ $$$$\Rightarrow{r}=\mathrm{2} \\ $$$$\because{CIDK}\:{is}\:{square} \\ $$$$\therefore{KI}=\sqrt{\mathrm{2}}{r} \\ $$$$\Rightarrow{KM}={KI}+{IM}=\sqrt{\mathrm{2}}{r}+{r}=\mathrm{2}\sqrt{\mathrm{2}}+\mathrm{2} \\ $$
Commented by Tawa1 last updated on 23/Jul/19
$$\mathrm{Wow},\:\mathrm{i}\:\mathrm{understand}\:\mathrm{now}\:\mathrm{very}\:\mathrm{well}.\:\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{more} \\ $$
Commented by mr W last updated on 23/Jul/19
$${it}'{s}\:{wrong}\:{sir}! \\ $$$${since}\:{a}\neq{b}, \\ $$$${KM}\:{doesn}'{t}\:{pass}\:{through}\:{the}\:{center} \\ $$$${of}\:{incircle},\:{and}\:{KM}\:{is}\:{not}\:\bot{AB}. \\ $$
Commented by LPM last updated on 23/Jul/19
$$\mathrm{good} \\ $$
Answered by mr W last updated on 23/Jul/19
$${c}=\sqrt{\mathrm{6}^{\mathrm{2}} +\mathrm{8}^{\mathrm{2}} }=\mathrm{10} \\ $$$${area}\:{of}\:{triangle}=\frac{\mathrm{6}×\mathrm{8}}{\mathrm{2}} \\ $$$${area}\:{of}\:{triangle}=\frac{{r}\left(\mathrm{6}+\mathrm{8}+\mathrm{10}\right)}{\mathrm{2}} \\ $$$$\frac{\mathrm{6}×\mathrm{8}}{\mathrm{2}}=\frac{{r}\left(\mathrm{6}+\mathrm{8}+\mathrm{10}\right)}{\mathrm{2}} \\ $$$$\Rightarrow{r}=\mathrm{2} \\ $$$${AM}=\mathrm{6}−{r}=\mathrm{4} \\ $$$$\mathrm{cos}\:{A}=\frac{\mathrm{6}}{\mathrm{10}}=\frac{\mathrm{3}}{\mathrm{5}} \\ $$$${KM}^{\mathrm{2}} =\mathrm{6}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} −\mathrm{2}×\mathrm{6}×\mathrm{4}×\mathrm{cos}\:{A} \\ $$$$=\mathrm{52}−\mathrm{48}×\frac{\mathrm{3}}{\mathrm{5}}=\frac{\mathrm{116}}{\mathrm{5}} \\ $$$$\Rightarrow{KM}=\sqrt{\frac{\mathrm{116}}{\mathrm{5}}}=\mathrm{2}\sqrt{\frac{\mathrm{29}}{\mathrm{5}}}=\frac{\mathrm{2}\sqrt{\mathrm{145}}}{\mathrm{5}}=\mathrm{4}.\mathrm{82} \\ $$
Commented by Tony Lin last updated on 23/Jul/19
Commented by Tony Lin last updated on 23/Jul/19
$${sorry}\:{for}\:{not}\:{noticing}\:{this},\:{now}\:{i}\:{got}\:{it} \\ $$
Commented by mr W last updated on 23/Jul/19
$${yes},\:\:{tree}\:{sir}! \\ $$
Commented by Tawa1 last updated on 23/Jul/19
$$\mathrm{Ohh}.\:\mathrm{Really},\:\:\mathrm{and}\:\mathrm{i}\:\mathrm{have}\:\mathrm{understand}\:\mathrm{sir}\:\mathrm{tonny}\:\mathrm{prebvious}\:\mathrm{work}. \\ $$$$\mathrm{Let}\:\mathrm{me}\:\mathrm{see}\:\mathrm{drawing}\:\mathrm{to}\:\mathrm{understand}\:\mathrm{your}\:\mathrm{solution}\:\mathrm{sir}. \\ $$
Commented by Tawa1 last updated on 23/Jul/19
$$\mathrm{I}\:\mathrm{want}\:\mathrm{to}\:\mathrm{get}\:\mathrm{your}\:\mathrm{second}\:\mathrm{line}\:\mathrm{sir} \\ $$
Commented by mr W last updated on 23/Jul/19
$${i}\:{added}\:{a}\:{comment}. \\ $$
Commented by LPM last updated on 23/Jul/19
$$\mathrm{good} \\ $$
Commented by Tawa1 last updated on 23/Jul/19
$$\mathrm{Ohh}.\:\mathrm{okay}.\:\mathrm{I}\:\mathrm{appreciate}\:\mathrm{sir} \\ $$