Question Number 65199 by rajesh4661kumar@gmail.com last updated on 26/Jul/19
Answered by Tanmay chaudhury last updated on 26/Jul/19
$$\left(\mathrm{1}\right),\left(\mathrm{2},\mathrm{3},\mathrm{4}\right),\left(\mathrm{5},\mathrm{6},\mathrm{7},\mathrm{8},\mathrm{9}\right),\left(\mathrm{10},\mathrm{11},\mathrm{12},\mathrm{13},\mathrm{14},\mathrm{15},\mathrm{16}\right)… \\ $$$$\mathrm{1}{st}\:{group}\:\:{contains}\rightarrow\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:{terms} \\ $$$$\mathrm{2}{nd}\:{group}\:{contains}\:\rightarrow\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}\:{terms} \\ $$$$\mathrm{3}{rd}\:\:\:{group}\:\:\:{contains}\rightarrow\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{5}{terms} \\ $$$$\mathrm{4}{th}\:\:\:\:{grouo}\:{contains}\:\:\:\rightarrow\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{7}{terms} \\ $$$$….. \\ $$$$….. \\ $$$${nth}\:{group}\:{contains}\:\:\:\:\rightarrow\left\{\mathrm{1}+\left({n}−\mathrm{1}\right)\mathrm{2}\right\}\rightarrow\:\:\:\:\:\mathrm{2}{n}−\mathrm{1}\:{terms} \\ $$$${determination}\:{of}\:{first}\:{term}\:{of}\:{nth}\:{group} \\ $$$${let}\:{t}_{{n}} ={be}\:{the}\:{first}\:{term}\:{of}\:{nth}\:{group} \\ $$$${taking}\:{the}\:{first}\:{term}\:{of}\:{each}\:{group} \\ $$$${S}=\mathrm{1}+\mathrm{2}+\mathrm{5}+\mathrm{10}+\mathrm{17}+….+{t}_{{n}} \:\:\:\:\:\left(\leftarrow{total}\:{nterms}\right) \\ $$$${S}=\:\:\:\:\:\:\:\:\mathrm{1}+\mathrm{2}\:+\mathrm{5}+\mathrm{10}+….+{t}_{{n}−\mathrm{1}} +{t}_{{n}} \left(\leftarrow{total}\:{n}\:{terms}\right) \\ $$$${substructing}\: \\ $$$$\mathrm{0}=\mathrm{1}+\mathrm{1}+\mathrm{3}+\mathrm{5}+\mathrm{7}+….−{t}_{{n}} \:\:\left(\leftarrow{total}\:{n}+\mathrm{1}\:{terms}\right) \\ $$$${t}_{{n}} =\mathrm{1}+\mathrm{1}+\mathrm{3}+\mathrm{5}+\mathrm{7}…..\left(\leftarrow{total}\:{nterms}\right) \\ $$$${t}_{{n}} =\mathrm{1}+\left(\mathrm{1}+\mathrm{3}+\mathrm{5}+\mathrm{7}+…\leftarrow{total}\:{n}−\mathrm{1}\:{terms}\right) \\ $$$${t}_{{n}} =\mathrm{1}+\frac{{n}−\mathrm{1}}{\mathrm{2}}\left[\mathrm{2}×\mathrm{1}+\left({n}−\mathrm{1}−\mathrm{1}\right)×\mathrm{2}\right] \\ $$$${t}_{{n}} =\mathrm{1}+\frac{{n}−\mathrm{1}}{\mathrm{2}}×\left(\mathrm{2}{n}−\mathrm{2}\right) \\ $$$${t}_{{n}} ={n}^{\mathrm{2}} −\mathrm{2}{n}+\mathrm{2} \\ $$$${so}\:{sum}\:{of}\:{terms}\:{in}\:{nth}\:{group}\:{is} \\ $$$${S}_{{nth}} =\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{2}}\left[\mathrm{2}{t}_{{n}} +\left(\mathrm{2}{n}−\mathrm{1}−\mathrm{1}\right)×\mathrm{1}\right] \\ $$$$=\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{2}}\left[\mathrm{2}{n}^{\mathrm{2}} −\mathrm{4}{n}+\mathrm{4}+\mathrm{2}{n}−\mathrm{2}\right] \\ $$$$=\left(\mathrm{2}{n}−\mathrm{1}\right)\left({n}^{\mathrm{2}} −{n}+\mathrm{1}\right) \\ $$$$=\mathrm{2}{n}^{\mathrm{3}} −\mathrm{2}{n}^{\mathrm{2}} +\mathrm{2}{n}−{n}^{\mathrm{2}} +{n}−\mathrm{1} \\ $$$$={n}^{\mathrm{3}} +{n}^{\mathrm{3}} −\mathrm{3}{n}^{\mathrm{2}} +\mathrm{3}{n}−\mathrm{1} \\ $$$$=\left({n}\right)^{\mathrm{3}} +\left({n}−\mathrm{1}\right)^{\mathrm{3}} \:\:\:{proved} \\ $$
Commented by peter frank last updated on 26/Jul/19
$${thank}\:{you} \\ $$