Question-65281 Tinku Tara June 4, 2023 Geometry 0 Comments FacebookTweetPin Question Number 65281 by mr W last updated on 27/Jul/19 Commented by mr W last updated on 27/Jul/19 segmentofcirclewithsize2c×d.(d⩽c)findtheinscribedellipsewithmaximumarea. Answered by mr W last updated on 28/Jul/19 R=radiusofcircled(2R−d)=c2⇒R=c2+d22dleth=R−d=c2−d22deqn.ofcircle:x2+(y+h)2=R2x2+y2+2hy+h2−R2=0⇒x2+y2+2hy−c2=0…(i)eqn.ofellipse:x2a2+(y−b)2b2=1x2+a2b2y2−2a2by=0…(ii)(i)−(ii):(1−a2b2)y2+2(h+a2b)y−c2=0duetotangencythereisonlyoneroot,Δ=4(h+a2b)2+4c2(1−a2b2)=0⇒(hb+a2)2+c2(b2−a2)=0…(iii)⇒(hab+a3)2+c2(a2b2−a4)=0letP=ab⇒(hP+a3)2+c2(P2−a4)=0formaximumellipsearea,dPda=0⇒2(hP+a3)(3a2)+c2(−4a3)=0⇒3(hb+a2)−2c2=0ifh=0,i.e.d=c:3a2−2c2=0⇒a=6c3⇒b=2c3ifh≠0:⇒b=1h(2c23−a2)insertthisinto(iii):(2c23−a2+a2)2+c2(b2−a2)=04c29+1h2(2c23−a2)2−a2=04c2h29+(2c23−a2)2−h2a2=0a4−(4c23+h2)a2+4c2(c2+h2)9=0⇒a2=12[4c23+h2−(4c23+h2)2−16c2(c2+h2)9]⇒a2=12[4c23+h2−16c4+24c2h2+9h4−16c4−16c2h29]⇒a2=12(4c23+h2−h8c29+h2)⇒a=12(4c23+h2−h8c29+h2) Commented by mr W last updated on 28/Jul/19 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-65277Next Next post: 8sin-3-x-pi-6-cos-3x-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.