Question Number 65289 by naka3546 last updated on 27/Jul/19
Commented by Prithwish sen last updated on 27/Jul/19
$$\mathrm{let} \\ $$$$\boldsymbol{\Sigma\mathrm{pqr}}=\boldsymbol{\mathrm{A}},\boldsymbol{\Sigma\mathrm{pq}}=\boldsymbol{\mathrm{B}},\boldsymbol{\Sigma\mathrm{p}}=\boldsymbol{\mathrm{C}} \\ $$$$\mathrm{Then}\:\mathrm{from}\:\mathrm{the}\:\mathrm{last}\:\mathrm{three}\:\mathrm{equation}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{A}+\mathrm{B}+\mathrm{C}=\mathrm{5} \\ $$$$\mathrm{A}+\mathrm{2B}+\mathrm{4C}=−\mathrm{3} \\ $$$$\mathrm{A}+\mathrm{3B}+\mathrm{9C}=−\mathrm{21} \\ $$$$\mathrm{solving}\:\mathrm{this}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{A}=\mathrm{3},\mathrm{B}=\mathrm{7},\mathrm{C}=−\mathrm{5} \\ $$$$\therefore\left(\boldsymbol{\mathrm{p}}+\mathrm{4}\right)\left(\boldsymbol{\mathrm{q}}+\mathrm{4}\right)\left(\boldsymbol{\mathrm{r}}+\mathrm{4}\right)\left(\boldsymbol{\mathrm{s}}+\mathrm{4}\right)=\mathrm{4}\boldsymbol{\mathrm{A}}+\mathrm{16}\boldsymbol{\mathrm{B}}+\mathrm{64}\boldsymbol{\mathrm{C}}+\mathrm{254} \\ $$$$=\mathrm{12}+\mathrm{112}−\mathrm{320}+\mathrm{254}=\mathrm{58} \\ $$$$\mathrm{please}\:\mathrm{check}. \\ $$
Answered by mr W last updated on 28/Jul/19
$${pqrs}+\Sigma{pqr}+\Sigma{pq}+\Sigma{p}+\mathrm{1}=\mathrm{4} \\ $$$$\Rightarrow\Sigma{pqr}+\Sigma{pq}+\Sigma{p}=\mathrm{5}\:\:\:…\left({i}\right) \\ $$$${pqrs}+\mathrm{2}\Sigma{pqr}+\mathrm{4}\Sigma{pq}+\mathrm{8}\Sigma{p}+\mathrm{16}=\mathrm{8} \\ $$$$\Rightarrow\Sigma{pqr}+\mathrm{2}\Sigma{pq}+\mathrm{4}\Sigma{p}=−\mathrm{3}\:\:\:…\left({ii}\right) \\ $$$${pqrs}+\mathrm{3}\Sigma{pqr}+\mathrm{9}\Sigma{pq}+\mathrm{27}\Sigma{p}+\mathrm{81}=\mathrm{16} \\ $$$$\Rightarrow\Sigma{pqr}+\mathrm{3}\Sigma{pq}+\mathrm{9}\Sigma{p}=−\mathrm{21}\:\:\:…\left({iii}\right) \\ $$$$\Rightarrow\Sigma{pqr}=\mathrm{3} \\ $$$$\Rightarrow\Sigma{pq}=\mathrm{7} \\ $$$$\Rightarrow\Sigma{p}=−\mathrm{5} \\ $$$$ \\ $$$$\left({p}+\mathrm{4}\right)\left({q}+\mathrm{4}\right)\left({r}+\mathrm{4}\right)\left({s}+\mathrm{4}\right) \\ $$$$={pqrs}+\mathrm{4}\Sigma{pqr}+\mathrm{16}\Sigma{pq}+\mathrm{64}\Sigma{p}+\mathrm{256} \\ $$$$=−\mathrm{2}+\mathrm{4}×\mathrm{3}+\mathrm{16}×\mathrm{7}+\mathrm{64}×\left(−\mathrm{5}\right)+\mathrm{256} \\ $$$$=−\mathrm{2}+\mathrm{12}+\mathrm{112}−\mathrm{320}+\mathrm{256} \\ $$$$=\mathrm{58} \\ $$$$ \\ $$$${generally} \\ $$$$\left({p}+{n}\right)\left({q}+{n}\right)\left({r}+{n}\right)\left({s}+{n}\right) \\ $$$$={pqrs}+{n}\Sigma{pqr}+{n}^{\mathrm{2}} \Sigma{pq}+{n}^{\mathrm{3}} \Sigma{p}+{n}^{\mathrm{4}} \\ $$$$=−\mathrm{2}+\mathrm{3}{n}+\mathrm{7}{n}^{\mathrm{2}} −\mathrm{5}{n}^{\mathrm{3}} +{n}^{\mathrm{4}} \\ $$$$ \\ $$$$============== \\ $$$${p},{q},{r},{s}\:{are}\:{roots}\:{of}\:{eqn}. \\ $$$${z}^{\mathrm{4}} +\mathrm{5}{z}^{\mathrm{3}} +\mathrm{7}{z}^{\mathrm{2}} −\mathrm{3}{z}−\mathrm{2}=\mathrm{0} \\ $$