Menu Close

Question-65325




Question Number 65325 by Tawa1 last updated on 28/Jul/19
Commented by Tony Lin last updated on 28/Jul/19
(a)(i)  (i)OE^→ =λOD^→ +(1−λ)OC^→                =λ(4b^→ )+(1−λ)((4/3)a^→ )   (i i)    =μOB^→ +(1−μ)OA^→                =μ(2b^→ )+(1−μ)(2a^→ )  (b)OE^→ =λOD^→ +(1−λ)OC^→                =λ(2OB^→ )+(1−λ)((2/3)OA^→ )  ⇒(4/3)λ+(2/3)=1⇒λ=(1/4)  ⇒OE^→ =(1/4)OD^→ +(3/4)OC^→   ⇒CE: ED=1: 3  2λ=μ  ⇒μ=(1/2)  ⇒OE^→ =(1/2)OB^→ +(1/2)OA^→   ⇒AE: EB=1: 1
$$\left({a}\right)\left({i}\right) \\ $$$$\left({i}\right){O}\overset{\rightarrow} {{E}}=\lambda{O}\overset{\rightarrow} {{D}}+\left(\mathrm{1}−\lambda\right){O}\overset{\rightarrow} {{C}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\lambda\left(\mathrm{4}\overset{\rightarrow} {{b}}\right)+\left(\mathrm{1}−\lambda\right)\left(\frac{\mathrm{4}}{\mathrm{3}}\overset{\rightarrow} {{a}}\right) \\ $$$$\:\left({i}\:{i}\right)\:\:\:\:=\mu{O}\overset{\rightarrow} {{B}}+\left(\mathrm{1}−\mu\right){O}\overset{\rightarrow} {{A}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\mu\left(\mathrm{2}\overset{\rightarrow} {{b}}\right)+\left(\mathrm{1}−\mu\right)\left(\mathrm{2}\overset{\rightarrow} {{a}}\right) \\ $$$$\left({b}\right){O}\overset{\rightarrow} {{E}}=\lambda{O}\overset{\rightarrow} {{D}}+\left(\mathrm{1}−\lambda\right){O}\overset{\rightarrow} {{C}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\lambda\left(\mathrm{2}{O}\overset{\rightarrow} {{B}}\right)+\left(\mathrm{1}−\lambda\right)\left(\frac{\mathrm{2}}{\mathrm{3}}{O}\overset{\rightarrow} {{A}}\right) \\ $$$$\Rightarrow\frac{\mathrm{4}}{\mathrm{3}}\lambda+\frac{\mathrm{2}}{\mathrm{3}}=\mathrm{1}\Rightarrow\lambda=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\Rightarrow{O}\overset{\rightarrow} {{E}}=\frac{\mathrm{1}}{\mathrm{4}}{O}\overset{\rightarrow} {{D}}+\frac{\mathrm{3}}{\mathrm{4}}{O}\overset{\rightarrow} {{C}} \\ $$$$\Rightarrow{CE}:\:{ED}=\mathrm{1}:\:\mathrm{3} \\ $$$$\mathrm{2}\lambda=\mu \\ $$$$\Rightarrow\mu=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{O}\overset{\rightarrow} {{E}}=\frac{\mathrm{1}}{\mathrm{2}}{O}\overset{\rightarrow} {{B}}+\frac{\mathrm{1}}{\mathrm{2}}{O}\overset{\rightarrow} {{A}} \\ $$$$\Rightarrow{AE}:\:{EB}=\mathrm{1}:\:\mathrm{1} \\ $$
Commented by Tony Lin last updated on 28/Jul/19
or you can use Menelaus theorem  ((AC)/(CO))×((OD)/(DB))×((BE)/(EA))=1  (1/2)×(2/1)×((BE)/(EA))=1  ⇒BE: EA=1: 1  ⇒OE^→ =(1/2)OA^→ +(1/2)OB^→   ⇒μ=(1/2)  ((DB)/(BO))×((OA)/(AC))×((CE)/(ED))=1  (1/1)×(3/1)×((CE)/(ED))=1  ⇒CE: ED=1: 3  ⇒OE^→ =(1/4)OD^→ +(3/4)OC^→   ⇒λ=(1/4)
$${or}\:{you}\:{can}\:{use}\:{Menelaus}\:{theorem} \\ $$$$\frac{{AC}}{{CO}}×\frac{{OD}}{{DB}}×\frac{{BE}}{{EA}}=\mathrm{1} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{2}}{\mathrm{1}}×\frac{{BE}}{{EA}}=\mathrm{1} \\ $$$$\Rightarrow{BE}:\:{EA}=\mathrm{1}:\:\mathrm{1} \\ $$$$\Rightarrow{O}\overset{\rightarrow} {{E}}=\frac{\mathrm{1}}{\mathrm{2}}{O}\overset{\rightarrow} {{A}}+\frac{\mathrm{1}}{\mathrm{2}}{O}\overset{\rightarrow} {{B}} \\ $$$$\Rightarrow\mu=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\frac{{DB}}{{BO}}×\frac{{OA}}{{AC}}×\frac{{CE}}{{ED}}=\mathrm{1} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}}×\frac{\mathrm{3}}{\mathrm{1}}×\frac{{CE}}{{ED}}=\mathrm{1} \\ $$$$\Rightarrow{CE}:\:{ED}=\mathrm{1}:\:\mathrm{3} \\ $$$$\Rightarrow{O}\overset{\rightarrow} {{E}}=\frac{\mathrm{1}}{\mathrm{4}}{O}\overset{\rightarrow} {{D}}+\frac{\mathrm{3}}{\mathrm{4}}{O}\overset{\rightarrow} {{C}} \\ $$$$\Rightarrow\lambda=\frac{\mathrm{1}}{\mathrm{4}} \\ $$
Commented by Tawa1 last updated on 28/Jul/19
God bless you sir. I appreciate your time
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{time} \\ $$
Answered by mr W last updated on 28/Jul/19
(a)  (i)  CD=−CO+OD=−(4/3)a+4b  CE=λCD=−((4λ)/3)a+4λb  ⇒OE=OC+CE=(4/3)a−((4λ)/3)a+4λb=((4(1−λ))/3)a+4λb  (ii)  AB=AO+OB=−2a+2b  AE=μAB=−2μa+2μb  OE=OA+AE=2a−2μa+2μb=2(1−μ)a+2μb    (b)  ((4(1−λ))/3)=2(1−μ)  ⇒2(1−λ)=3(1−μ)  ⇒3μ−2λ=1      ...(i)  4λ=2μ  ⇒2λ−μ=0   ...(ii)  from (i) and (ii):  6λ−2λ=1  ⇒λ=(1/4)  ⇒μ=(1/2)
$$\left({a}\right) \\ $$$$\left({i}\right) \\ $$$${CD}=−{CO}+{OD}=−\frac{\mathrm{4}}{\mathrm{3}}{a}+\mathrm{4}{b} \\ $$$${CE}=\lambda{CD}=−\frac{\mathrm{4}\lambda}{\mathrm{3}}{a}+\mathrm{4}\lambda{b} \\ $$$$\Rightarrow{OE}={OC}+{CE}=\frac{\mathrm{4}}{\mathrm{3}}{a}−\frac{\mathrm{4}\lambda}{\mathrm{3}}{a}+\mathrm{4}\lambda{b}=\frac{\mathrm{4}\left(\mathrm{1}−\lambda\right)}{\mathrm{3}}{a}+\mathrm{4}\lambda{b} \\ $$$$\left({ii}\right) \\ $$$${AB}={AO}+{OB}=−\mathrm{2}{a}+\mathrm{2}{b} \\ $$$${AE}=\mu{AB}=−\mathrm{2}\mu{a}+\mathrm{2}\mu{b} \\ $$$${OE}={OA}+{AE}=\mathrm{2}{a}−\mathrm{2}\mu{a}+\mathrm{2}\mu{b}=\mathrm{2}\left(\mathrm{1}−\mu\right){a}+\mathrm{2}\mu{b} \\ $$$$ \\ $$$$\left({b}\right) \\ $$$$\frac{\mathrm{4}\left(\mathrm{1}−\lambda\right)}{\mathrm{3}}=\mathrm{2}\left(\mathrm{1}−\mu\right) \\ $$$$\Rightarrow\mathrm{2}\left(\mathrm{1}−\lambda\right)=\mathrm{3}\left(\mathrm{1}−\mu\right) \\ $$$$\Rightarrow\mathrm{3}\mu−\mathrm{2}\lambda=\mathrm{1}\:\:\:\:\:\:…\left({i}\right) \\ $$$$\mathrm{4}\lambda=\mathrm{2}\mu \\ $$$$\Rightarrow\mathrm{2}\lambda−\mu=\mathrm{0}\:\:\:…\left({ii}\right) \\ $$$${from}\:\left({i}\right)\:{and}\:\left({ii}\right): \\ $$$$\mathrm{6}\lambda−\mathrm{2}\lambda=\mathrm{1} \\ $$$$\Rightarrow\lambda=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\Rightarrow\mu=\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by Tawa1 last updated on 28/Jul/19
God bless you sir, i appreciate your time
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir},\:\mathrm{i}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{time} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *