Menu Close

Question-65332




Question Number 65332 by aliesam last updated on 28/Jul/19
Commented by mathmax by abdo last updated on 29/Jul/19
let suppose n inter let decompose the fraction  F(x) =(x/(x^n  +1))  z^n  +1 =0 ⇒z^n  =−1  ⇒r^n  e^(inθ)  =e^((2k+1)π)     (z=re^(iθ) ) ⇒r=1 andθ  θ =(((2k+1)π)/n) so the roots are Z_k =e^(i(((2k+1)π)/n))    k∈[[0,n−1]]  F(x) =Σ_(i=0) ^(n−1)  (λ_i /(x−Z_i ))      with λ_i =(Z_i /(nZ_i ^(n−1) )) =(Z_i ^2 /(−n)) ⇒  F(x) =−(1/n)Σ_(i=0) ^(n−1)    (Z_i ^2 /(x−Z_i )) ⇒ ∫ F(x)dx =−(1/n)Σ_(i=0) ^(n−1) Z_i ^2  ∫   (dx/(x−Z_i ))  rest to determine ∫  (dx/(x−Z_i ))   be continued...
letsupposeninterletdecomposethefractionF(x)=xxn+1zn+1=0zn=1rneinθ=e(2k+1)π(z=reiθ)r=1andθθ=(2k+1)πnsotherootsareZk=ei(2k+1)πnk[[0,n1]]F(x)=i=0n1λixZiwithλi=ZinZin1=Zi2nF(x)=1ni=0n1Zi2xZiF(x)dx=1ni=0n1Zi2dxxZiresttodeterminedxxZibecontinued

Leave a Reply

Your email address will not be published. Required fields are marked *