Question Number 65463 by aliesam last updated on 30/Jul/19
Answered by MJS last updated on 31/Jul/19
$$\mathrm{i}^{{an}} =\mathrm{cos}\:\frac{{an}\pi}{\mathrm{2}}\:+\mathrm{i}\:\mathrm{sin}\:\frac{{an}\pi}{\mathrm{2}} \\ $$$$\mathrm{imag}\:\left(\mathrm{i}^{{n}} +\mathrm{i}^{\mathrm{2}{n}} +\mathrm{i}^{\mathrm{3}{n}} \right)\:=\mathrm{0} \\ $$$$\mathrm{sin}\:\frac{{n}\pi}{\mathrm{2}}\:+\mathrm{sin}\:{n}\pi\:+\mathrm{sin}\:\frac{\mathrm{3}{n}\pi}{\mathrm{2}}\:=\mathrm{0} \\ $$$${n}=\frac{\mathrm{4}}{\pi}\mathrm{arctan}\:{t} \\ $$$$\frac{\mathrm{4}{t}\left({t}−\mathrm{1}\right)\left({t}+\mathrm{1}\right)\left({t}^{\mathrm{2}} −\mathrm{3}\right)}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }=\mathrm{0} \\ $$$$\Rightarrow\:{t}=−\sqrt{\mathrm{3}}\vee{t}=−\mathrm{1}\vee{t}=\mathrm{0}\vee{t}=\mathrm{1}\vee{t}=\sqrt{\mathrm{3}} \\ $$$$\Rightarrow\:{n}=−\frac{\mathrm{4}}{\mathrm{3}}\vee{n}=−\mathrm{1}\vee{n}=\mathrm{0}\vee{n}=\mathrm{1}\vee{n}=\frac{\mathrm{4}}{\mathrm{3}} \\ $$$$\mathrm{because}\:\mathrm{of}\:\mathrm{period}\:\mathrm{length}\:\mathrm{4} \\ $$$${n}=−\frac{\mathrm{4}}{\mathrm{3}}+\mathrm{4}{k}\vee{n}=−\mathrm{1}+\mathrm{4}{k}\vee{n}=\mathrm{4}{k}\vee{n}=\mathrm{1}+\mathrm{4}{k}\vee{n}=\frac{\mathrm{4}}{\mathrm{3}}+\mathrm{4}{k} \\ $$