Menu Close

Question-65464




Question Number 65464 by aliesam last updated on 30/Jul/19
Commented by mathmax by abdo last updated on 30/Jul/19
let  A(x) =x(x+1)ln(((x+1)/x))−x    we have for x∈V(+∞)  ln(((x+1)/x)) =ln(1+(1/x)) =(1/x)−(1/(2x^2 )) +o((1/x^2 ))   A(x) =(x^2 +x)((1/x)−(1/(2x^2 )) +o((1/x^2 )))−x  =x−(1/2) +1−(1/(2x)) −x +o((1/x)) =(1/2) −(1/(2x)) +o((1/x)) ⇒lim_(x→+∞) A(x)=(1/2)
$${let}\:\:{A}\left({x}\right)\:={x}\left({x}+\mathrm{1}\right){ln}\left(\frac{{x}+\mathrm{1}}{{x}}\right)−{x}\:\:\:\:{we}\:{have}\:{for}\:{x}\in{V}\left(+\infty\right) \\ $$$${ln}\left(\frac{{x}+\mathrm{1}}{{x}}\right)\:={ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)\:=\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }\:+{o}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)\: \\ $$$${A}\left({x}\right)\:=\left({x}^{\mathrm{2}} +{x}\right)\left(\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }\:+{o}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)\right)−{x} \\ $$$$={x}−\frac{\mathrm{1}}{\mathrm{2}}\:+\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{x}}\:−{x}\:+{o}\left(\frac{\mathrm{1}}{{x}}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}\:−\frac{\mathrm{1}}{\mathrm{2}{x}}\:+{o}\left(\frac{\mathrm{1}}{{x}}\right)\:\Rightarrow{lim}_{{x}\rightarrow+\infty} {A}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *