Question Number 78635 by Pratah last updated on 19/Jan/20
Commented by john santu last updated on 19/Jan/20
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\underset{{n}} {\overset{\mathrm{2}{n}} {\int}}\:\left(\frac{{x}}{{x}^{\mathrm{5}} +\mathrm{1}}\right){dx}\:}{{n}^{−\mathrm{3}} }\right)=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\left(\frac{\mathrm{2}{n}}{\mathrm{32}{n}^{\mathrm{5}} +\mathrm{1}}\right).\mathrm{2}−\left(\frac{{n}}{{n}^{\mathrm{5}} +\mathrm{1}}\right).\mathrm{1}}{−\mathrm{3}{n}^{−\mathrm{4}} } \\ $$$$=−\frac{\mathrm{1}}{\mathrm{3}}\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{4}{n}^{\mathrm{5}} }{\mathrm{32}{n}^{\mathrm{5}} +\mathrm{1}}\right)−\left(\frac{{n}^{\mathrm{5}} }{{n}^{\mathrm{5}} +\mathrm{1}}\right) \\ $$$$=\:−\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{\mathrm{1}}{\mathrm{8}}−\mathrm{1}\right)=\:−\frac{\mathrm{1}}{\mathrm{3}}×\left(\frac{−\mathrm{7}}{\mathrm{8}}\right)=\frac{\mathrm{7}}{\mathrm{24}}. \\ $$
Commented by Pratah last updated on 19/Jan/20
$$\mathrm{thanks} \\ $$
Commented by mr W last updated on 19/Jan/20
$${it}\:{is}\:{to}\:{prove}\:{at}\:{first}\:{that}\underset{{n}\rightarrow\infty} {\mathrm{lim}}\underset{{n}} {\overset{\mathrm{2}{n}} {\int}}\:\left(\frac{{x}}{{x}^{\mathrm{5}} +\mathrm{1}}\right){dx}=\mathrm{0}! \\ $$
Commented by jagoll last updated on 19/Jan/20
$$\mathrm{L}'\mathrm{Hopital}\:\mathrm{can}\:\mathrm{be}\:\mathrm{using}\: \\ $$$$\mathrm{for}\:\mathrm{limit}\:\mathrm{form}\:\frac{\infty}{\infty} \\ $$
Commented by mr W last updated on 19/Jan/20
$${we}\:{have}\:{here}\:\frac{\mathrm{0}}{\mathrm{0}} \\ $$
Commented by john santu last updated on 19/Jan/20
$${in}\:{other}\:{way}\: \\ $$$${let}\:{n}\:=\:\frac{\mathrm{1}}{{t}}\:\Rightarrow{t}\:\rightarrow\mathrm{0} \\ $$$$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\underset{\frac{\mathrm{1}}{{t}}} {\int}^{\frac{\mathrm{2}}{{t}}} \left(\frac{{x}}{{x}^{\mathrm{5}} +\mathrm{1}}\right){dx}}{{t}^{\mathrm{3}} }\right)= \\ $$$$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left[\frac{\left(\frac{\mathrm{2}}{{t}}\right).\left(\frac{−\mathrm{2}}{{t}^{\mathrm{2}} }\right)}{\left(\frac{\mathrm{32}}{{t}^{\mathrm{5}} }+\mathrm{1}\right)}−\frac{\left(\frac{\mathrm{1}}{{t}}\right).\left(\frac{−\mathrm{1}}{{t}^{\mathrm{2}} }\right)}{\left(\frac{\mathrm{1}}{{t}^{\mathrm{5}} }+\mathrm{1}\right)}\right]\:×\frac{\mathrm{1}}{\mathrm{3}{t}^{\mathrm{2}} } \\ $$$$=\:\left[\frac{−\mathrm{4}{t}^{\mathrm{2}} }{\mathrm{32}+{t}^{\mathrm{5}} }−\frac{\left(−{t}^{\mathrm{2}} \right)}{\left(\mathrm{1}+{t}^{\mathrm{5}} \right)}\right]×\frac{\mathrm{1}}{\mathrm{3}{t}^{\mathrm{2}} } \\ $$$$=\:\left[\frac{−\mathrm{1}}{\mathrm{8}}+\mathrm{1}\right]×\frac{\mathrm{1}}{\mathrm{3}}=\frac{\mathrm{7}}{\mathrm{24}}\:.\bigstar \\ $$
Commented by mr W last updated on 19/Jan/20
$${I}_{{n}} =\underset{{n}} {\overset{\mathrm{2}{n}} {\int}}\:\left(\frac{{x}}{{x}^{\mathrm{5}} +\mathrm{1}}\right){dx} \\ $$$$\mathrm{0}<\frac{{x}}{{x}^{\mathrm{5}} +\mathrm{1}}<\frac{{x}}{{x}^{\mathrm{5}} }=\frac{\mathrm{1}}{{x}^{\mathrm{4}} } \\ $$$$\mathrm{0}<{I}_{{n}} <\frac{\mathrm{1}}{\left(\mathrm{2}{n}\right)^{\mathrm{4}} }=\frac{\mathrm{1}}{\mathrm{32}{n}^{\mathrm{4}} } \\ $$$$\mathrm{0}<\underset{{n}\rightarrow\infty} {\mathrm{lim}}{I}_{{n}} <\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{32}{n}^{\mathrm{4}} }=\mathrm{0} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}{I}_{{n}} =\mathrm{0} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\underset{{n}} {\overset{\mathrm{2}{n}} {\int}}\:\left(\frac{{x}}{{x}^{\mathrm{5}} +\mathrm{1}}\right){dx}}{\frac{\mathrm{1}}{{n}^{\mathrm{3}} }}=\frac{\mathrm{0}}{\mathrm{0}} \\ $$
Commented by john santu last updated on 19/Jan/20
$${by}\:{using}\:{the}\:{sequence}\:{theorem}\:{sir} \\ $$
Answered by mr W last updated on 19/Jan/20
$${I}=\int_{{n}} ^{\mathrm{2}{n}} \frac{{x}}{\mathrm{1}+{x}^{\mathrm{5}} }{dx} \\ $$$${let}\:{t}=\frac{\mathrm{1}}{{x}} \\ $$$${dx}=−\frac{{dt}}{{t}^{\mathrm{2}} } \\ $$$${I}=\int_{\frac{\mathrm{1}}{{n}}} ^{\frac{\mathrm{1}}{\mathrm{2}{n}}} \frac{\frac{\mathrm{1}}{{t}}}{\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{5}} }}×\left(−\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right){dt} \\ $$$$=\int_{\frac{\mathrm{1}}{\mathrm{2}{n}}} ^{\frac{\mathrm{1}}{{n}}} \frac{{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{5}} }{dt} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{n}^{\mathrm{3}} \int_{{n}} ^{\mathrm{2}{n}} \frac{{x}}{\mathrm{1}+{x}^{\mathrm{5}} }{dx} \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\int_{{n}} ^{\mathrm{2}{n}} \frac{{x}}{\mathrm{1}+{x}^{\mathrm{5}} }{dx}}{\left(\frac{\mathrm{1}}{{n}}\right)^{\mathrm{3}} } \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\int_{\frac{\mathrm{1}}{\mathrm{2}{n}}} ^{\frac{\mathrm{1}}{{n}}} \frac{{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{5}} }{dt}}{\left(\frac{\mathrm{1}}{{n}}\right)^{\mathrm{3}} } \\ $$$$=\underset{{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\int_{\frac{{u}}{\mathrm{2}}} ^{{u}} \frac{{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{5}} }{dt}}{{u}^{\mathrm{3}} }\:\:\:\:\:\left(=\frac{\mathrm{0}}{\mathrm{0}}\right) \\ $$$$=\underset{{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{5}} }−\frac{\left(\frac{{u}}{\mathrm{2}}\right)^{\mathrm{2}} }{\mathrm{1}+\left(\frac{{u}}{\mathrm{2}}\right)^{\mathrm{5}} }×\frac{\mathrm{1}}{\mathrm{2}}}{\mathrm{3}{u}^{\mathrm{2}} } \\ $$$$=\underset{{u}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\frac{\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{5}} }−\frac{\mathrm{4}}{\mathrm{32}+{u}^{\mathrm{5}} }\right)}{\mathrm{3}} \\ $$$$=\frac{\mathrm{7}}{\mathrm{8}×\mathrm{3}} \\ $$$$=\frac{\mathrm{7}}{\mathrm{24}} \\ $$