Question Number 78814 by M±th+et£s last updated on 20/Jan/20
Commented by mind is power last updated on 21/Jan/20
$$\mathrm{2}{nd}\:{Way} \\ $$$$\alpha^{\mathrm{2}} \beta^{\mathrm{2}} \gamma^{\mathrm{2}} \delta^{\mathrm{2}} +\alpha^{\mathrm{2}} \beta^{\mathrm{2}} +\alpha^{\mathrm{2}} \gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} \delta^{\mathrm{2}} +\beta^{\mathrm{2}} \gamma^{\mathrm{2}} +\beta^{\mathrm{2}} \delta^{\mathrm{2}} +\gamma^{\mathrm{2}} \delta^{\mathrm{2}} +\alpha^{\mathrm{2}} \beta^{\mathrm{2}} \gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} \beta^{\mathrm{2}} \delta^{\mathrm{2}} +\beta^{\mathrm{2}} \gamma^{\mathrm{2}} \delta^{\mathrm{2}} +\alpha^{\mathrm{2}} \gamma^{\mathrm{2}} \delta^{\mathrm{2}} \\ $$$$+\mathrm{1}+\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} +\delta^{\mathrm{2}} +\gamma^{\mathrm{2}} \\ $$$$\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} +\delta^{\mathrm{2}} +\gamma^{\mathrm{2}} =\left(\alpha+\beta+\delta+\gamma\right)^{\mathrm{2}} −\mathrm{2}\left(\alpha\beta+\beta\delta+\beta\gamma+\alpha\delta+\alpha\gamma+\delta\gamma\right) \\ $$$$=\left(−{b}\right)^{\mathrm{2}} −\mathrm{2}{c}={b}^{\mathrm{2}} −\mathrm{2}{c} \\ $$$$\alpha^{\mathrm{2}} \beta^{\mathrm{2}} \gamma^{\mathrm{2}} \delta^{\mathrm{2}} =\left(\alpha\beta\gamma\delta\right)^{\mathrm{2}} ={e}^{\mathrm{2}} \\ $$$$\left(\alpha^{\mathrm{2}} \beta^{\mathrm{2}} +\alpha^{\mathrm{2}} \delta^{\mathrm{2}} +\alpha^{\mathrm{2}} \gamma^{\mathrm{2}} +\beta^{\mathrm{2}} \delta^{\mathrm{2}} +\beta^{\mathrm{2}} \gamma^{\mathrm{2}} +\delta^{\mathrm{2}} \gamma^{\mathrm{2}} \right)=\left(\alpha\beta+\alpha\delta+\alpha\gamma+\beta\delta+\beta\gamma+\delta\gamma\right)^{\mathrm{2}} \\ $$$${S}=\alpha\beta+\beta\gamma+\beta\delta+\delta\gamma+\delta\alpha+\gamma\alpha \\ $$$$−\mathrm{2}\alpha^{\mathrm{2}} \beta\delta−\mathrm{2}\alpha^{\mathrm{2}} \beta\gamma−\mathrm{2}\alpha^{\mathrm{2}} \delta\gamma−\mathrm{2}\beta^{\mathrm{2}} \left(\alpha\gamma+\gamma\delta+\alpha\delta\right)−\mathrm{2}\gamma^{\mathrm{2}} \left(\alpha\beta+\alpha\delta+\delta\beta\right) \\ $$$$−\mathrm{2}\delta^{\mathrm{2}} \left(\alpha\beta+\alpha\gamma+\gamma\beta\right) \\ $$$$={c}^{\mathrm{2}} −\mathrm{2}\alpha^{\mathrm{2}} \left({S}−\alpha\left(\beta+\gamma+\delta\right)\right)−\mathrm{2}\beta^{\mathrm{2}} \left({S}−\beta\left(\alpha+\gamma+\delta\right)\right)−\mathrm{2}\delta^{\mathrm{2}} \left({S}−\delta\left(\alpha+\beta+\gamma\right)\right) \\ $$$$=−\mathrm{2}\gamma^{\mathrm{2}} \left({S}−\gamma\left(\alpha+\beta+\delta\right)\right) \\ $$$$=−\mathrm{2}{S}\left(\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} +\delta^{\mathrm{2}} +\gamma^{\mathrm{2}} \right)+\mathrm{2}\alpha^{\mathrm{3}} \left(\beta+\gamma+\delta\right)+\mathrm{2}\beta^{\mathrm{3}} \left(\alpha+\gamma+\delta\right)+\mathrm{2}\delta^{\mathrm{2}} \left(\alpha+\beta+\gamma\right) \\ $$$$+\mathrm{2}\gamma^{\mathrm{3}} \left(\alpha+\beta+\delta\right) \\ $$$${U}=\alpha+\beta+\delta+\gamma \\ $$$$=−\mathrm{2}{S}\left(\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} +\delta^{\mathrm{2}} \right)+\mathrm{2}{U}\left(\alpha^{\mathrm{3}} +\beta^{\mathrm{3}} +\delta^{\mathrm{3}} +\gamma^{\mathrm{3}} \right)−\mathrm{2}\alpha^{\mathrm{4}} −\mathrm{2}\beta^{\mathrm{4}} −\mathrm{2}\gamma^{\mathrm{4}} −\mathrm{2}\delta^{\mathrm{4}} \\ $$$$\alpha^{\mathrm{3}} +\beta^{\mathrm{3}} +\gamma^{\mathrm{3}} +\delta^{\mathrm{3}} \\ $$$${use}\:{Newtoon}\:{Identity} \\ $$$${Too}\:{Bee}\:{continued}\:{not}\:{the}\:{Best}\:{Way}\:{to}\:{go}\:{for}\:{but}\:{Worcks} \\ $$
Answered by mind is power last updated on 20/Jan/20
$$\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)=\left(\mathrm{x}+\mathrm{i}\right)\left(\mathrm{x}−\mathrm{i}\right) \\ $$$$\mathrm{p}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{4}} +\mathrm{ax}^{\mathrm{3}} +\mathrm{bx}^{\mathrm{2}} +\mathrm{cx}+\mathrm{d}=\left(\mathrm{x}−\alpha\right)\left(\mathrm{x}−\beta\right)\left(\mathrm{x}−\gamma\right)\left(\mathrm{x}−\delta\right) \\ $$$$\left(\alpha^{\mathrm{2}} +\mathrm{1}\right)\left(\beta^{\mathrm{2}} +\mathrm{1}\right)\left(\gamma^{\mathrm{2}} +\mathrm{1}\right)\left(\delta^{\mathrm{2}} +\mathrm{1}\right) \\ $$$$=\left(\alpha−\mathrm{i}\right)\left(\beta−\mathrm{i}\right)\left(\gamma−\mathrm{i}\right)\left(\delta−\mathrm{i}\right)\left(\alpha+\mathrm{i}\right)\left(\beta+\mathrm{i}\right)\left(\gamma+\mathrm{i}\right)\left(\delta+\mathrm{i}\right) \\ $$$$\mathrm{p}\left(−\mathrm{i}\right)=\left(−\mathrm{i}−\alpha\right)\left(−\mathrm{i}−\beta\right)\left(−\mathrm{i}−\gamma\right)\left(−\mathrm{i}−\delta\right) \\ $$$$=\left(\mathrm{i}+\alpha\right)\left(\mathrm{i}+\beta\right)\left(\mathrm{i}+\gamma\right)\left(\mathrm{i}+\delta\right) \\ $$$$\mathrm{p}\left(\mathrm{i}\right)=\left(\mathrm{i}−\alpha\right)\left(\mathrm{i}−\gamma\right)\left(\mathrm{i}−\delta\right)\left(\mathrm{i}−\beta\right)=\left(\alpha−\mathrm{i}\right)\left(\beta−\mathrm{i}\right)\left(\delta−\mathrm{i}\right)\left(\gamma−\mathrm{i}\right) \\ $$$$\Leftrightarrow\left(\alpha^{\mathrm{2}} +\mathrm{1}\right)\left(\beta^{\mathrm{2}} +\mathrm{1}\right)\left(\gamma^{\mathrm{2}} +\mathrm{1}\right)\left(\delta^{\mathrm{2}} +\mathrm{1}\right)=\mathrm{p}\left(\mathrm{i}\right).\mathrm{p}\left(−\mathrm{i}\right) \\ $$$$=\left(\mathrm{1}−\mathrm{ia}−\mathrm{b}+\mathrm{ci}+\mathrm{d}\right)\left(\mathrm{1}+\mathrm{ia}−\mathrm{b}−\mathrm{ci}+\mathrm{d}\right) \\ $$$$=\left(\mathrm{1}−\mathrm{b}+\mathrm{d}+\mathrm{i}\left(\mathrm{d}−\mathrm{a}\right)\right)\left(\mathrm{1}−\mathrm{b}+\mathrm{d}−\mathrm{i}\left(\mathrm{d}−\mathrm{a}\right)\right) \\ $$$$\mathrm{if}\:\mathrm{b},\mathrm{c},\mathrm{d},\mathrm{e}\:\mathrm{are}\:\mathrm{reel} \\ $$$$=\left(\mathrm{1}−\mathrm{b}+\mathrm{d}\right)^{\mathrm{2}} +\left(\mathrm{d}−\mathrm{a}\right)^{\mathrm{2}} \\ $$$$\mathrm{other}\:\mathrm{case}=\left(\mathrm{1}−\mathrm{b}+\mathrm{d}+\mathrm{i}\left(\mathrm{d}−\mathrm{a}\right)\right)\left(\mathrm{1}−\mathrm{b}+\mathrm{d}−\mathrm{i}\left(\mathrm{d}−\mathrm{a}\right)\right) \\ $$
Commented by M±th+et£s last updated on 20/Jan/20
$${nice}\:{job}.\:{though}\:{there}\:{is}\:{a}\:{small}\:{error} \\ $$$${in}\:{the}\:{fourth}\:{line}\:{from}\:{below}\:{when} \\ $$$${you}\:{want}\:{to}\:{factorize}\:{by}\:{i}\:,\:{its}:\:\mathrm{i}\left(\mathrm{c}−\mathrm{a}\right)\:{and}\:−\mathrm{i}\left(\mathrm{c}−\mathrm{a}\right). \\ $$
Commented by mind is power last updated on 20/Jan/20
$$\mathrm{yeah} \\ $$
Commented by jagoll last updated on 21/Jan/20
$$\mathrm{mr}\:\mathrm{Mind}\:\mathrm{is}\:\mathrm{power} \\ $$$$\mathrm{if}\:\mathrm{we}\:\mathrm{work}\:\mathrm{using}\:\mathrm{Vieta}'\mathrm{s}\:\mathrm{rule}, \\ $$$$\mathrm{given}\:\mathrm{the}\:\mathrm{same}\:\mathrm{result}? \\ $$
Commented by mind is power last updated on 21/Jan/20
$$\mathrm{yeah}\:\: \\ $$