Question Number 79254 by mr W last updated on 23/Jan/20
Commented by mr W last updated on 23/Jan/20
$${If}\:{the}\:{side}\:{length}\:{of}\:{the}\:{square}\:{is}\:\mathrm{10}, \\ $$$${find} \\ $$$$\left.\mathrm{1}\right)\:{the}\:{radius}\:{of}\:{the}\:{smallest}\:{circle} \\ $$$$\left.\mathrm{2}\right)\:{the}\:{shaded}\:{area} \\ $$
Commented by key of knowledge last updated on 23/Jan/20
$$\left.\mathrm{1}\left.\right)\mathrm{r}=\frac{\mathrm{5}}{\mathrm{3}}\:\:\:\:\:\:\:\:\:\mathrm{2}\right)\mathrm{i}\:\mathrm{think}\:\mathrm{need}\:\left(\int\right)\:! \\ $$
Answered by john santu last updated on 24/Jan/20
Commented by mr W last updated on 24/Jan/20
$${not}\:{correct}\:{sir}! \\ $$$${it}\:{seems}\:{but}\:{it}\:{is}\:{not}:\:{AP}\:{not}\bot{PB},\:{AP}\neq\mathrm{5}. \\ $$
Commented by john santu last updated on 24/Jan/20
$${r}_{{A}} +\:{r}\:=\:\mathrm{5}…\:\left({i}\right) \\ $$$$\left({r}_{{A}} +\mathrm{5}\right)^{\mathrm{2}} =\mathrm{25}+\left(\mathrm{10}−{r}_{{A}} \right)^{\mathrm{2}} \\ $$$${r}_{{A}} ^{\mathrm{2}} +\mathrm{10}{r}_{{A}} +\mathrm{25}=\mathrm{25}+\mathrm{100}−\mathrm{20}{r}_{{A}} +{r}_{{A}} ^{\mathrm{2}} \\ $$$$\mathrm{30}{r}_{{A}} \:=\:\mathrm{100}\:\Rightarrow{r}_{{A}} =\frac{\mathrm{10}}{\mathrm{3}} \\ $$$${now}\:{we}\:{work}\:\left({i}\right)\:{r}\:=\:\mathrm{5}\:−\frac{\mathrm{10}}{\mathrm{3}}=\frac{\mathrm{5}}{\mathrm{3}} \\ $$$$ \\ $$
Commented by john santu last updated on 24/Jan/20
$${prove}\:{it}\:{if}\:{it}'{s}\:{not}\:{right}\:{mister} \\ $$
Commented by mr W last updated on 24/Jan/20
$${sir}:\:{what}\:{i}\:{meant}\:{above}\:{is} \\ $$$${it}\:{seems}\:{but}\:{it}\:{is}\:{not}\:{proved}:\:{AP}\:\bot{PB},\:{AP}=\mathrm{5}. \\ $$$${you}\:{just}\:{assumed}\:{these}\:{are}\:{true}. \\ $$$${in}\:{fact}\:{i}\:{can}'{t}\:{see}\:{in}\:{your}\:{solution} \\ $$$${that}\:{you}\:{utilised}\:{the}\:{condition}\:{that} \\ $$$${the}\:{smallest}\:{circle}\:{also}\:{tangents}\:{the} \\ $$$${largest}\:{quartocircle}. \\ $$$${i}\:{have}\:{not}\:{calculated}\:{this}\:{question}, \\ $$$${so}\:{i}\:{have}\:{no}\:{result}\:{yet}.\:{maybe}\:{your} \\ $$$${result}\:{is}\:{regardless}\:{correct}.\:{then} \\ $$$${it}'{s}\:{by}\:{accident},\:{i}\:{think}. \\ $$$${i}'{ll}\:{post}\:{my}\:{solution}\:{and}\:{compare}. \\ $$
Commented by mr W last updated on 24/Jan/20
$${i}\:{have}\:{calculated}.\:{your}\:{result}\:\left({values}\right) \\ $$$${is}\:{correct}. \\ $$
Answered by mr W last updated on 24/Jan/20
Commented by mr W last updated on 24/Jan/20
$$\left({Part}\:{I}\right) \\ $$$$\mathrm{2}{R}=\mathrm{10}\:\Rightarrow{R}=\mathrm{5} \\ $$$${OB}=\mathrm{2}{R}−{s} \\ $$$${AB}={R}+{s} \\ $$$$\left({R}+{s}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} +\left(\mathrm{2}{R}−{s}\right)^{\mathrm{2}} \\ $$$$\mathrm{3}{s}=\mathrm{2}{R} \\ $$$$\Rightarrow{s}=\frac{\mathrm{2}{R}}{\mathrm{3}}=\frac{\mathrm{10}}{\mathrm{3}} \\ $$$${OC}=\mathrm{2}{R}−{r} \\ $$$${BC}={s}+{r} \\ $$$${let}\:\beta=\angle{BOC} \\ $$$$\mathrm{cos}\:\beta=\frac{\left(\mathrm{2}{R}−{s}\right)^{\mathrm{2}} +\left(\mathrm{2}{R}−{r}\right)^{\mathrm{2}} −\left({s}+{r}\right)^{\mathrm{2}} }{\mathrm{2}\left(\mathrm{2}{R}−{s}\right)\left(\mathrm{2}{R}−{r}\right)} \\ $$$$\Rightarrow\mathrm{cos}\:\beta=\frac{\mathrm{2}\left({R}−{r}\right)}{\mathrm{2}{R}−{r}} \\ $$$${AC}={R}+{r} \\ $$$${let}\:\alpha=\angle{AOC} \\ $$$$\mathrm{cos}\:\alpha=\frac{{R}^{\mathrm{2}} +\left(\mathrm{2}{R}−{r}\right)^{\mathrm{2}} −\left({R}+{r}\right)^{\mathrm{2}} }{\mathrm{2}{R}\left(\mathrm{2}{R}−{r}\right)} \\ $$$$\Rightarrow\mathrm{cos}\:\alpha=\frac{\mathrm{2}{R}−\mathrm{3}{r}}{\mathrm{2}{R}−{r}}=\mathrm{sin}\:\beta \\ $$$$\mathrm{cos}^{\mathrm{2}} \:\beta+\mathrm{sin}^{\mathrm{2}} \:\beta=\mathrm{1} \\ $$$$\frac{\mathrm{4}\left({R}−{r}\right)^{\mathrm{2}} +\left(\mathrm{2}{R}−\mathrm{3}{r}\right)^{\mathrm{2}} }{\left(\mathrm{2}{R}−{r}\right)^{\mathrm{2}} }=\mathrm{1} \\ $$$$\mathrm{4}{R}^{\mathrm{2}} −\mathrm{8}{Rr}+\mathrm{4}{r}^{\mathrm{2}} +\mathrm{4}{R}^{\mathrm{2}} −\mathrm{12}{Rr}+\mathrm{9}{r}^{\mathrm{2}} =\mathrm{4}{R}^{\mathrm{2}} −\mathrm{4}{Rr}+{r}^{\mathrm{2}} \\ $$$${R}^{\mathrm{2}} −\mathrm{4}{Rr}+\mathrm{3}{r}^{\mathrm{2}} =\mathrm{0} \\ $$$$\left({R}−{r}\right)\left({R}−\mathrm{3}{r}\right)=\mathrm{0} \\ $$$$\Rightarrow{r}={R}\:\Rightarrow\:{not}\:{the}\:{solution} \\ $$$$\Rightarrow{r}=\frac{{R}}{\mathrm{3}}=\frac{\mathrm{5}}{\mathrm{3}} \\ $$
Commented by john santu last updated on 24/Jan/20
$$\left(\mathrm{10}−{r}\right)^{\mathrm{2}} =\mathrm{5}^{\mathrm{2}} +\left(\mathrm{5}+{r}\right)^{\mathrm{2}} \\ $$$$\mathrm{100}−\mathrm{20}{r}+{r}^{\mathrm{2}} =\mathrm{25}+\mathrm{25}+\mathrm{10}{r}+{r}^{\mathrm{2}} \\ $$$$\mathrm{50}\:=\:\mathrm{30}{r}\:\Rightarrow{r}=\:\frac{\mathrm{5}}{\mathrm{3}} \\ $$
Commented by mr W last updated on 24/Jan/20
$$\left(\mathrm{10}−{r}\right)^{\mathrm{2}} =\mathrm{5}^{\mathrm{2}} +\left(\mathrm{5}+{r}\right)^{\mathrm{2}} \:{means}\:{OA}\bot{AC}, \\ $$$${but}\:{i}\:{think}\:{this}\:{is}\:{not}\:{yet}\:{proved}.\:{or} \\ $$$${how}\:{did}\:{you}\:{get}\:{that}\:{OA}\bot{AC}? \\ $$
Commented by john santu last updated on 24/Jan/20
$${mister}.\:{we}\:{cannot}\:{claim}\:{our} \\ $$$${way}\:{is}\:{right},{so}\:{we}\:{deem}\:{different} \\ $$$${ways}\:{wrong}\:.\:{it}\:{is}\:{shortsighted}. \\ $$$${everyone}'{s}\:{point}\:{of}\:{view}\:{is} \\ $$$${different} \\ $$
Commented by john santu last updated on 24/Jan/20
Commented by john santu last updated on 24/Jan/20
$${look}\:{sir} \\ $$
Commented by mr W last updated on 24/Jan/20
$${discussion}\:{is}\:{always}\:{good}. \\ $$$${btw}\:{your}\:{diagram}\:{didn}'{t}\:{answer}\:{my}\: \\ $$$${question}\:{how}\:{to}\:{get}\:{that}\:{OA}\bot{AC}.\:{it} \\ $$$${says}\:{only}\:{that}\:{AC}\bot{the}\:{tangent}\:{line}. \\ $$
Answered by mr W last updated on 24/Jan/20
Commented by mr W last updated on 24/Jan/20
$$\left({Part}\:{II}\right) \\ $$$${as}\:{calculated}\:{in}\:{part}\:{I}\:{we}\:{have}\:{got} \\ $$$${s}=\frac{\mathrm{2}{R}}{\mathrm{3}}=\frac{\mathrm{10}}{\mathrm{3}} \\ $$$${r}=\frac{{R}}{\mathrm{3}}=\frac{\mathrm{5}}{\mathrm{3}} \\ $$$${BC}={s}+{r}=\frac{\mathrm{2}{R}}{\mathrm{3}}+\frac{{R}}{\mathrm{3}}={R}={OA} \\ $$$${OB}=\mathrm{2}{R}−{s}=\mathrm{2}{R}−\frac{\mathrm{2}{R}}{\mathrm{3}}=\frac{\mathrm{4}{R}}{\mathrm{3}} \\ $$$${AC}={R}+{r}={R}+\frac{{R}}{\mathrm{3}}=\frac{\mathrm{4}{R}}{\mathrm{3}}={OB} \\ $$$$\Rightarrow{OACB}\:{is}\:{rectangle}. \\ $$$$\mathrm{tan}\:\beta=\frac{{R}}{\frac{\mathrm{4}{R}}{\mathrm{3}}}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\Rightarrow\beta=\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\gamma=\frac{\pi}{\mathrm{2}}+\beta \\ $$$${A}_{\overset{\frown} {{ODE}}} =\frac{\beta\left(\mathrm{2}{R}\right)^{\mathrm{2}} }{\mathrm{2}}=\mathrm{2}{R}^{\mathrm{2}} \beta \\ $$$${A}_{\Delta{OBC}} =\frac{\mathrm{1}}{\mathrm{2}}×{R}×\frac{\mathrm{4}{R}}{\mathrm{3}}=\frac{\mathrm{2}{R}^{\mathrm{2}} }{\mathrm{3}} \\ $$$${A}_{\overset{\frown} {{BDF}}} =\frac{\pi}{\mathrm{4}}\left(\frac{\mathrm{2}{R}}{\mathrm{3}}\right)^{\mathrm{2}} =\frac{\pi{R}^{\mathrm{2}} }{\mathrm{9}} \\ $$$${A}_{\overset{\frown} {{FCE}}} =\frac{\gamma}{\mathrm{2}}\left(\frac{{R}}{\mathrm{3}}\right)^{\mathrm{2}} =\frac{{R}^{\mathrm{2}} }{\mathrm{18}}\left(\frac{\pi}{\mathrm{2}}+\beta\right) \\ $$$${A}_{{shaded}} ={A}_{\overset{\frown} {{ODE}}} −{A}_{\Delta{OBC}} −{A}_{\overset{\frown} {{BDF}}} −{A}_{\overset{\frown} {{FCE}}} \\ $$$$=\mathrm{2}{R}^{\mathrm{2}} \beta−\frac{\mathrm{2}{R}^{\mathrm{2}} }{\mathrm{3}}−\frac{\pi{R}^{\mathrm{2}} }{\mathrm{9}}−\frac{{R}^{\mathrm{2}} }{\mathrm{18}}\left(\frac{\pi}{\mathrm{2}}+\beta\right) \\ $$$$=\frac{\left(\mathrm{70}\beta−\mathrm{5}\pi−\mathrm{24}\right){R}^{\mathrm{2}} }{\mathrm{36}} \\ $$$$\Rightarrow{A}_{{shaded}} =\frac{\left(\mathrm{70}\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{4}}−\mathrm{5}\pi−\mathrm{24}\right){R}^{\mathrm{2}} }{\mathrm{36}}\approx\mathrm{0}.\mathrm{148253}{R}^{\mathrm{2}} \\ $$$$\approx\mathrm{3}.\mathrm{706329} \\ $$
Answered by mr W last updated on 24/Jan/20
Commented by mr W last updated on 24/Jan/20
$${here}\:{is}\:{an}\:{other}\:{way}\:{to}\:{solve}\:{using} \\ $$$${the}\:{Descartes}'\:{theorem} \\ $$$$\left({see}\:{Q}\mathrm{77681}\:{for}\:{more}\:{details}\right) \\ $$$$ \\ $$$${R}_{\mathrm{1}} =\mathrm{2}{R}=\mathrm{10} \\ $$$${R}_{\mathrm{2}} ={R}=\mathrm{5} \\ $$$${R}_{\mathrm{3}} ={s}=? \\ $$$${R}_{\mathrm{4}} ={r}=? \\ $$$$ \\ $$$${applying}\:{Descartes}'\:{theorem}\:{on} \\ $$$${R}_{\mathrm{1}} ,\mathrm{2}×{R}_{\mathrm{2}} \:{and}\:{R}_{\mathrm{3}} : \\ $$$$\left(−\frac{\mathrm{1}}{{R}_{\mathrm{1}} }+\frac{\mathrm{2}}{{R}_{\mathrm{2}} }+\frac{\mathrm{1}}{{R}_{\mathrm{3}} }\right)^{\mathrm{2}} =\mathrm{2}\left(\frac{\mathrm{1}}{{R}_{\mathrm{1}} ^{\mathrm{2}} }+\frac{\mathrm{2}}{{R}_{\mathrm{2}} ^{\mathrm{2}} }+\frac{\mathrm{1}}{{R}_{\mathrm{3}} ^{\mathrm{2}} }\right) \\ $$$$\left(−\frac{\mathrm{1}}{\mathrm{2}{R}}+\frac{\mathrm{2}}{{R}}+\frac{\mathrm{1}}{{s}}\right)^{\mathrm{2}} =\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{4}{R}^{\mathrm{2}} }+\frac{\mathrm{2}}{{R}^{\mathrm{2}} }+\frac{\mathrm{1}}{{s}^{\mathrm{2}} }\right) \\ $$$$\mathrm{4}\frac{{R}^{\mathrm{2}} }{{s}^{\mathrm{2}} }−\mathrm{12}\frac{{R}}{{s}}+\mathrm{9}=\mathrm{0} \\ $$$$\left(\mathrm{2}\frac{{R}}{{s}}−\mathrm{3}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{s}=\frac{\mathrm{2}{R}}{\mathrm{3}}=\frac{\mathrm{10}}{\mathrm{3}} \\ $$$$ \\ $$$${applying}\:{Descartes}'\:{theorem}\:{on} \\ $$$${R}_{\mathrm{1}} ,{R}_{\mathrm{2}} ,{R}_{\mathrm{3}} \:{and}\:{R}_{\mathrm{4}} : \\ $$$$\left(−\frac{\mathrm{1}}{{R}_{\mathrm{1}} }+\frac{\mathrm{1}}{{R}_{\mathrm{2}} }+\frac{\mathrm{1}}{{R}_{\mathrm{3}} }+\frac{\mathrm{1}}{{R}_{\mathrm{4}} }\right)^{\mathrm{2}} =\mathrm{2}\left(\frac{\mathrm{1}}{{R}_{\mathrm{1}} ^{\mathrm{2}} }+\frac{\mathrm{1}}{{R}_{\mathrm{2}} ^{\mathrm{2}} }+\frac{\mathrm{1}}{{R}_{\mathrm{3}} ^{\mathrm{2}} }+\frac{\mathrm{1}}{{R}_{\mathrm{4}} ^{\mathrm{2}} }\right) \\ $$$$\left(−\frac{\mathrm{1}}{\mathrm{2}{R}}+\frac{\mathrm{1}}{{R}}+\frac{\mathrm{3}}{\mathrm{2}{R}}+\frac{\mathrm{1}}{{r}}\right)^{\mathrm{2}} =\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{4}{R}^{\mathrm{2}} }+\frac{\mathrm{1}}{{R}^{\mathrm{2}} }+\frac{\mathrm{9}}{\mathrm{4}{R}^{\mathrm{2}} }+\frac{\mathrm{1}}{{r}^{\mathrm{2}} }\right) \\ $$$$\frac{{R}^{\mathrm{2}} }{{r}^{\mathrm{2}} }−\mathrm{4}\frac{{R}}{{r}}+\mathrm{3}=\mathrm{0} \\ $$$$\left(\frac{{R}}{{r}}−\mathrm{1}\right)\left(\frac{{R}}{{r}}−\mathrm{3}\right)=\mathrm{0} \\ $$$$\Rightarrow{r}={R}\:\Rightarrow{not}\:{the}\:{searched}\:{circle} \\ $$$$\Rightarrow{r}=\frac{{R}}{\mathrm{3}}=\frac{\mathrm{5}}{\mathrm{3}} \\ $$