Menu Close

Question-79361




Question Number 79361 by TawaTawa last updated on 24/Jan/20
Commented by mr W last updated on 24/Jan/20
in the figure point O is not displayed.  we assume O is the intersection of AD  and EC.
$${in}\:{the}\:{figure}\:{point}\:{O}\:{is}\:{not}\:{displayed}. \\ $$$${we}\:{assume}\:{O}\:{is}\:{the}\:{intersection}\:{of}\:{AD} \\ $$$${and}\:{EC}. \\ $$
Answered by mr W last updated on 24/Jan/20
Commented by mr W last updated on 24/Jan/20
α=180−30−40=110°  β=α=110°  γ=(β/2)=55°  δ+γ=180°  ⇒∠ABC=δ=180−γ=180−55=125°    we see it is even not necessary that  ED tangents the circle as shown.
$$\alpha=\mathrm{180}−\mathrm{30}−\mathrm{40}=\mathrm{110}° \\ $$$$\beta=\alpha=\mathrm{110}° \\ $$$$\gamma=\frac{\beta}{\mathrm{2}}=\mathrm{55}° \\ $$$$\delta+\gamma=\mathrm{180}° \\ $$$$\Rightarrow\angle{ABC}=\delta=\mathrm{180}−\gamma=\mathrm{180}−\mathrm{55}=\mathrm{125}° \\ $$$$ \\ $$$${we}\:{see}\:{it}\:{is}\:{even}\:{not}\:{necessary}\:{that} \\ $$$${ED}\:{tangents}\:{the}\:{circle}\:{as}\:{shown}. \\ $$
Commented by TawaTawa last updated on 24/Jan/20
God bless you sir. I appreciate your time.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{time}. \\ $$
Commented by mr W last updated on 24/Jan/20
is this solution correct?  can you understand my solution?
$${is}\:{this}\:{solution}\:{correct}? \\ $$$${can}\:{you}\:{understand}\:{my}\:{solution}? \\ $$
Commented by TawaTawa last updated on 24/Jan/20
I understand your solution sir
$$\mathrm{I}\:\mathrm{understand}\:\mathrm{your}\:\mathrm{solution}\:\mathrm{sir} \\ $$
Commented by TawaTawa last updated on 24/Jan/20
α + 30 + 40  =  180       (angle in Δ)  α  =  β    (vertically opposite angle)  γ + δ  =  180  (opposite angle in cyclic quadrillaterals)    I will use your workings sir. I understand.
$$\alpha\:+\:\mathrm{30}\:+\:\mathrm{40}\:\:=\:\:\mathrm{180}\:\:\:\:\:\:\:\left(\mathrm{angle}\:\mathrm{in}\:\Delta\right) \\ $$$$\alpha\:\:=\:\:\beta\:\:\:\:\left(\mathrm{vertically}\:\mathrm{opposite}\:\mathrm{angle}\right) \\ $$$$\gamma\:+\:\delta\:\:=\:\:\mathrm{180}\:\:\left(\mathrm{opposite}\:\mathrm{angle}\:\mathrm{in}\:\mathrm{cyclic}\:\mathrm{quadrillaterals}\right) \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{will}\:\mathrm{use}\:\mathrm{your}\:\mathrm{workings}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{understand}. \\ $$
Commented by mr W last updated on 24/Jan/20
fine! then you can solve Q79368 by  yourself.
$${fine}!\:{then}\:{you}\:{can}\:{solve}\:{Q}\mathrm{79368}\:{by} \\ $$$${yourself}. \\ $$
Commented by TawaTawa last updated on 24/Jan/20
Let me try sir.  Help me check if am right.
$$\mathrm{Let}\:\mathrm{me}\:\mathrm{try}\:\mathrm{sir}.\:\:\mathrm{Help}\:\mathrm{me}\:\mathrm{check}\:\mathrm{if}\:\mathrm{am}\:\mathrm{right}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *