Menu Close

Question-79377




Question Number 79377 by mr W last updated on 24/Jan/20
Commented by mr W last updated on 24/Jan/20
the side length of the square is a.  find the radius of the n−th small  circle r_n .
$${the}\:{side}\:{length}\:{of}\:{the}\:{square}\:{is}\:{a}. \\ $$$${find}\:{the}\:{radius}\:{of}\:{the}\:{n}−{th}\:{small} \\ $$$${circle}\:{r}_{{n}} . \\ $$
Commented by key of knowledge last updated on 24/Jan/20
mr w you like this problem!
$$\mathrm{mr}\:\mathrm{w}\:\mathrm{you}\:\mathrm{like}\:\mathrm{this}\:\mathrm{problem}! \\ $$
Commented by mr W last updated on 24/Jan/20
yes sir. i try to learn some new things   through this problem.
$${yes}\:{sir}.\:{i}\:{try}\:{to}\:{learn}\:{some}\:{new}\:{things}\: \\ $$$${through}\:{this}\:{problem}. \\ $$
Answered by mr W last updated on 25/Jan/20
we have got r_0 =(a/3) (vertical semicircle)  if we know r_n , how can we get r_(n+1) ?  we can apply the Descartes′ theorem  as following:  (−(1/a)+(2/a)+(1/r_n )+(1/r_(n+1) ))^2 =2((1/a^2 )+(4/a^2 )+(1/r_n ^2 )+(1/r_(n+1) ^2 ))  (2/(ar_n ))+(2/(ar_(n+1) ))+(2/(r_n r_(n+1) ))=(9/a^2 )+(1/r_n ^2 )+(1/r_(n+1) ^2 )  ((a/r_(n+1) )−(a/r_n ))^2 −2((a/r_(n+1) )−(a/r_n ))+9−4(a/r_n )=0  ⇒(a/r_(n+1) )−(a/r_n )=1+2(√((a/r_n )−2))  ⇒(a/r_(n+1) )=(a/r_n )+2(√((a/r_n )−2))+1  (a/r_0 )=3  (a/r_(n+1) )−2=(a/r_n )−2+2(√((a/r_n )−2))+1  (a/r_(n+1) )−2=((√((a/r_n )−2))+1)^2   let b_n =(√((a/r_n )−2))  ⇒b_(n+1) ^2 =(b_n +1)^2   ⇒b_(n+1) =b_n +1   ⇒ it′s a A.P. !  ⇒b_n =b_0 +n  b_0 =(√((a/r_0 )−2))=(√(3−2))=1  ⇒b_n =n+1  ⇒(√((a/r_n )−2))=n+1  ⇒(a/r_n )=(n+1)^2 +2  ⇒r_n =(a/((n+1)^2 +2))
$${we}\:{have}\:{got}\:{r}_{\mathrm{0}} =\frac{{a}}{\mathrm{3}}\:\left({vertical}\:{semicircle}\right) \\ $$$${if}\:{we}\:{know}\:{r}_{{n}} ,\:{how}\:{can}\:{we}\:{get}\:{r}_{{n}+\mathrm{1}} ? \\ $$$${we}\:{can}\:{apply}\:{the}\:{Descartes}'\:{theorem} \\ $$$${as}\:{following}: \\ $$$$\left(−\frac{\mathrm{1}}{{a}}+\frac{\mathrm{2}}{{a}}+\frac{\mathrm{1}}{{r}_{{n}} }+\frac{\mathrm{1}}{{r}_{{n}+\mathrm{1}} }\right)^{\mathrm{2}} =\mathrm{2}\left(\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{4}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{r}_{{n}} ^{\mathrm{2}} }+\frac{\mathrm{1}}{{r}_{{n}+\mathrm{1}} ^{\mathrm{2}} }\right) \\ $$$$\frac{\mathrm{2}}{{ar}_{{n}} }+\frac{\mathrm{2}}{{ar}_{{n}+\mathrm{1}} }+\frac{\mathrm{2}}{{r}_{{n}} {r}_{{n}+\mathrm{1}} }=\frac{\mathrm{9}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{r}_{{n}} ^{\mathrm{2}} }+\frac{\mathrm{1}}{{r}_{{n}+\mathrm{1}} ^{\mathrm{2}} } \\ $$$$\left(\frac{{a}}{{r}_{{n}+\mathrm{1}} }−\frac{{a}}{{r}_{{n}} }\right)^{\mathrm{2}} −\mathrm{2}\left(\frac{{a}}{{r}_{{n}+\mathrm{1}} }−\frac{{a}}{{r}_{{n}} }\right)+\mathrm{9}−\mathrm{4}\frac{{a}}{{r}_{{n}} }=\mathrm{0} \\ $$$$\Rightarrow\frac{{a}}{{r}_{{n}+\mathrm{1}} }−\frac{{a}}{{r}_{{n}} }=\mathrm{1}+\mathrm{2}\sqrt{\frac{{a}}{{r}_{{n}} }−\mathrm{2}} \\ $$$$\Rightarrow\frac{{a}}{{r}_{{n}+\mathrm{1}} }=\frac{{a}}{{r}_{{n}} }+\mathrm{2}\sqrt{\frac{{a}}{{r}_{{n}} }−\mathrm{2}}+\mathrm{1} \\ $$$$\frac{{a}}{{r}_{\mathrm{0}} }=\mathrm{3} \\ $$$$\frac{{a}}{{r}_{{n}+\mathrm{1}} }−\mathrm{2}=\frac{{a}}{{r}_{{n}} }−\mathrm{2}+\mathrm{2}\sqrt{\frac{{a}}{{r}_{{n}} }−\mathrm{2}}+\mathrm{1} \\ $$$$\frac{{a}}{{r}_{{n}+\mathrm{1}} }−\mathrm{2}=\left(\sqrt{\frac{{a}}{{r}_{{n}} }−\mathrm{2}}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$${let}\:{b}_{{n}} =\sqrt{\frac{{a}}{{r}_{{n}} }−\mathrm{2}} \\ $$$$\Rightarrow{b}_{{n}+\mathrm{1}} ^{\mathrm{2}} =\left({b}_{{n}} +\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{b}_{{n}+\mathrm{1}} ={b}_{{n}} +\mathrm{1}\:\:\:\Rightarrow\:{it}'{s}\:{a}\:{A}.{P}.\:! \\ $$$$\Rightarrow{b}_{{n}} ={b}_{\mathrm{0}} +{n} \\ $$$${b}_{\mathrm{0}} =\sqrt{\frac{{a}}{{r}_{\mathrm{0}} }−\mathrm{2}}=\sqrt{\mathrm{3}−\mathrm{2}}=\mathrm{1} \\ $$$$\Rightarrow{b}_{{n}} ={n}+\mathrm{1} \\ $$$$\Rightarrow\sqrt{\frac{{a}}{{r}_{{n}} }−\mathrm{2}}={n}+\mathrm{1} \\ $$$$\Rightarrow\frac{{a}}{{r}_{{n}} }=\left({n}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2} \\ $$$$\Rightarrow{r}_{{n}} =\frac{{a}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2}} \\ $$
Commented by behi83417@gmail.com last updated on 25/Jan/20
great! dear master.  can you applay this method to:Q#10455  (and also meet a nostalgia!)  [nostos:return to home  algia:be in suffer]
$$\mathrm{great}!\:\mathrm{dear}\:\mathrm{master}. \\ $$$$\mathrm{can}\:\mathrm{you}\:\mathrm{applay}\:\mathrm{this}\:\mathrm{method}\:\mathrm{to}:\mathrm{Q}#\mathrm{10455} \\ $$$$\left(\mathrm{and}\:\mathrm{also}\:\mathrm{meet}\:\mathrm{a}\:\mathrm{nostalgia}!\right) \\ $$$$\left[\mathrm{nostos}:\mathrm{return}\:\mathrm{to}\:\mathrm{home}\right. \\ $$$$\left.\mathrm{algia}:\mathrm{be}\:\mathrm{in}\:\mathrm{suffer}\right] \\ $$
Commented by mr W last updated on 25/Jan/20
haha, you still remember that oldie!  let me try if it could be solved in  similary way.
$${haha},\:{you}\:{still}\:{remember}\:{that}\:{oldie}! \\ $$$${let}\:{me}\:{try}\:{if}\:{it}\:{could}\:{be}\:{solved}\:{in} \\ $$$${similary}\:{way}. \\ $$
Commented by behi83417@gmail.com last updated on 25/Jan/20
thanks in advance dear master.
$$\mathrm{thanks}\:\mathrm{in}\:\mathrm{advance}\:\mathrm{dear}\:\mathrm{master}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *