Menu Close

Question-79516




Question Number 79516 by Pratah last updated on 25/Jan/20
Commented by abdomathmax last updated on 25/Jan/20
I =Σ_(k=2) ^(999)  ∫_k ^(k+1) kx dx =Σ_(k=2) ^(999) k [(x^2 /2)]_k ^(k+1)   =Σ_(k=2) ^(999) (k/2){ (k+1)^2 −k^2 }  =Σ_(k=2) ^(999)  (k/2){ k^2 +2k+1−k^2 }  =(1/2)Σ_(k=2) ^(999) k{2k+1} =(1/2)Σ_(k=2) ^(999) (2k^2  +k)  =Σ_(k=2) ^(999)  k^2  +(1/2)Σ_(k=2) ^(999) k  =Σ_(k=1) ^(999)  k^2  −1 +(1/2)Σ_(k=1) ^(999) k−(1/2)  we know Σ_(k=1) ^n k^2  =((n(n+1)(2n+1))/6) ⇒  I =((999(1000)(2×999 +1))/6) +(1/2)×((999(1000))/2) −(3/2)  rest finishing the calculus...
$${I}\:=\sum_{{k}=\mathrm{2}} ^{\mathrm{999}} \:\int_{{k}} ^{{k}+\mathrm{1}} {kx}\:{dx}\:=\sum_{{k}=\mathrm{2}} ^{\mathrm{999}} {k}\:\left[\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right]_{{k}} ^{{k}+\mathrm{1}} \\ $$$$=\sum_{{k}=\mathrm{2}} ^{\mathrm{999}} \frac{{k}}{\mathrm{2}}\left\{\:\left({k}+\mathrm{1}\right)^{\mathrm{2}} −{k}^{\mathrm{2}} \right\} \\ $$$$=\sum_{{k}=\mathrm{2}} ^{\mathrm{999}} \:\frac{{k}}{\mathrm{2}}\left\{\:{k}^{\mathrm{2}} +\mathrm{2}{k}+\mathrm{1}−{k}^{\mathrm{2}} \right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\sum_{{k}=\mathrm{2}} ^{\mathrm{999}} {k}\left\{\mathrm{2}{k}+\mathrm{1}\right\}\:=\frac{\mathrm{1}}{\mathrm{2}}\sum_{{k}=\mathrm{2}} ^{\mathrm{999}} \left(\mathrm{2}{k}^{\mathrm{2}} \:+{k}\right) \\ $$$$=\sum_{{k}=\mathrm{2}} ^{\mathrm{999}} \:{k}^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{2}}\sum_{{k}=\mathrm{2}} ^{\mathrm{999}} {k} \\ $$$$=\sum_{{k}=\mathrm{1}} ^{\mathrm{999}} \:{k}^{\mathrm{2}} \:−\mathrm{1}\:+\frac{\mathrm{1}}{\mathrm{2}}\sum_{{k}=\mathrm{1}} ^{\mathrm{999}} {k}−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${we}\:{know}\:\sum_{{k}=\mathrm{1}} ^{{n}} {k}^{\mathrm{2}} \:=\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{6}}\:\Rightarrow \\ $$$${I}\:=\frac{\mathrm{999}\left(\mathrm{1000}\right)\left(\mathrm{2}×\mathrm{999}\:+\mathrm{1}\right)}{\mathrm{6}}\:+\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{999}\left(\mathrm{1000}\right)}{\mathrm{2}}\:−\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${rest}\:{finishing}\:{the}\:{calculus}… \\ $$
Commented by Pratah last updated on 25/Jan/20
thanks
$$\mathrm{thanks} \\ $$
Commented by mathmax by abdo last updated on 25/Jan/20
you are welcome.
$${you}\:{are}\:{welcome}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *