Menu Close

Question-79516




Question Number 79516 by Pratah last updated on 25/Jan/20
Commented by abdomathmax last updated on 25/Jan/20
I =Σ_(k=2) ^(999)  ∫_k ^(k+1) kx dx =Σ_(k=2) ^(999) k [(x^2 /2)]_k ^(k+1)   =Σ_(k=2) ^(999) (k/2){ (k+1)^2 −k^2 }  =Σ_(k=2) ^(999)  (k/2){ k^2 +2k+1−k^2 }  =(1/2)Σ_(k=2) ^(999) k{2k+1} =(1/2)Σ_(k=2) ^(999) (2k^2  +k)  =Σ_(k=2) ^(999)  k^2  +(1/2)Σ_(k=2) ^(999) k  =Σ_(k=1) ^(999)  k^2  −1 +(1/2)Σ_(k=1) ^(999) k−(1/2)  we know Σ_(k=1) ^n k^2  =((n(n+1)(2n+1))/6) ⇒  I =((999(1000)(2×999 +1))/6) +(1/2)×((999(1000))/2) −(3/2)  rest finishing the calculus...
I=k=2999kk+1kxdx=k=2999k[x22]kk+1=k=2999k2{(k+1)2k2}=k=2999k2{k2+2k+1k2}=12k=2999k{2k+1}=12k=2999(2k2+k)=k=2999k2+12k=2999k=k=1999k21+12k=1999k12weknowk=1nk2=n(n+1)(2n+1)6I=999(1000)(2×999+1)6+12×999(1000)232restfinishingthecalculus
Commented by Pratah last updated on 25/Jan/20
thanks
thanks
Commented by mathmax by abdo last updated on 25/Jan/20
you are welcome.
youarewelcome.

Leave a Reply

Your email address will not be published. Required fields are marked *