Question Number 79634 by TawaTawa last updated on 26/Jan/20
Commented by mathmax by abdo last updated on 27/Jan/20
$$\Omega\:=\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} \:\frac{{x}}{{sin}\left(\mathrm{2}{x}\right)}{dx}\:\:{changement}\:{x}=\frac{\pi}{\mathrm{2}}−{t}\:{givet}=\frac{\pi}{\mathrm{2}}−{x} \\ $$$$\Omega=\int_{\frac{\mathrm{3}\pi}{\mathrm{10}}} ^{\frac{\pi}{\mathrm{5}}} \:\frac{\frac{\pi}{\mathrm{2}}−{t}}{{sin}\left(\mathrm{2}{t}\right)}\left(−{dt}\right)\:=\frac{\pi}{\mathrm{2}}\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} \:\frac{{dt}}{{sin}\left(\mathrm{2}{t}\right)}\:−\Omega\:\Rightarrow \\ $$$$\mathrm{2}\Omega\:=\frac{\pi}{\mathrm{2}}\:\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} \:\frac{{dt}}{{sin}\left(\mathrm{2}{t}\right)}\:\:{changement}\:{tant}\:={u}\:{give} \\ $$$$\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} \:\frac{{dt}}{{sin}\left(\mathrm{2}{t}\right)}\:=\int_{{tan}\left(\frac{\pi}{\mathrm{5}}\right)} ^{{tan}\left(\frac{\mathrm{3}\pi}{\mathrm{10}}\right)} \:\:\frac{\mathrm{1}}{\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }}×\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} }\:=\frac{\mathrm{1}}{\mathrm{2}}\left[{ln}\mid{u}\mid\right]_{{tan}\left(\frac{\pi}{\mathrm{5}}\right)} ^{{tan}\left(\frac{\mathrm{3}\pi}{\mathrm{10}}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{{ln}\left({tan}\left(\frac{\mathrm{3}\pi}{\mathrm{10}}\right)−{ln}\left({tan}\left(\frac{\pi}{\mathrm{5}}\right)\right)\right\}\right. \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{\:{ln}\left({tan}\left(\frac{\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{5}}\right)\right)−{ln}\left({tan}\left(\frac{\pi}{\mathrm{5}}\right)\right)\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{{ln}\left(\frac{\mathrm{1}}{{tan}\left(\frac{\pi}{\mathrm{5}}\right)}\right)−{ln}\left({tan}\left(\frac{\pi}{\mathrm{5}}\right)\right)\right\}=−{ln}\left({tan}\left(\frac{\pi}{\mathrm{5}}\right)\right)\:\Rightarrow \\ $$$$\Omega=−\frac{\pi}{\mathrm{4}}{ln}\left({tan}\left(\frac{\pi}{\mathrm{5}}\right)\right) \\ $$
Commented by TawaTawa last updated on 27/Jan/20
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by mathmax by abdo last updated on 29/Jan/20
$${you}\:{are}\:{welcome} \\ $$
Answered by mind is power last updated on 27/Jan/20
$$\Omega=\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} \frac{{x}}{{sin}\left(\mathrm{2}{x}\right)}{dx} \\ $$$$\int_{{a}} ^{{b}} {f}\left({x}\right){dx}=\int_{{a}} ^{{b}} {f}\left({a}+{b}−{x}\right){dx}\Rightarrow \\ $$$$\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} \frac{\frac{\pi}{\mathrm{2}}−{x}}{{sin}\left(\mathrm{2}\left(\frac{\pi}{\mathrm{2}}−{x}\right)\right)}{dx}=\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} \frac{\frac{\pi}{\mathrm{2}}−{x}}{{sin}\left(\pi−\mathrm{2}{x}\right)}{dx}=−\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} \frac{{x}}{{sin}\left(\mathrm{2}{x}\right)}+ \\ $$$$\frac{\pi}{\mathrm{2}}\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} \frac{{dx}}{{sin}\left(\mathrm{2}{x}\right)}\Rightarrow \\ $$$$\Rightarrow\mathrm{2}\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} \frac{{xdx}}{{sin}\left(\mathrm{2}{x}\right)}=\frac{\pi}{\mathrm{2}}\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} \frac{{dx}}{{sin}\left(\mathrm{2}{x}\right)}=\frac{\pi}{\mathrm{4}}\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} \frac{{dx}}{{sin}\left({x}\right){cos}\left({x}\right)} \\ $$$$=\frac{\pi}{\mathrm{4}}\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} \frac{{cos}\left({x}\right)}{{sin}\left({x}\right).{cos}^{\mathrm{2}} \left({x}\right)}{dx}=\frac{\pi}{\mathrm{4}}\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} {cot}\left({x}\right).\left(\mathrm{1}+{tg}^{\mathrm{2}} \left({x}\right)\right){dx} \\ $$$$=\frac{\pi}{\mathrm{4}}\int_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} {tg}\left(\frac{\pi}{\mathrm{2}}−{x}\right){d}\left({tg}\left({x}\right)\right) \\ $$$$=\frac{\pi}{\mathrm{8}}\left[−{tg}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{2}}−{x}\right)\right]_{\frac{\pi}{\mathrm{5}}} ^{\frac{\mathrm{3}\pi}{\mathrm{10}}} =−\frac{\pi}{\mathrm{8}}\left({tg}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{5}}\right)−{tg}^{\mathrm{2}} \left(\frac{\mathrm{3}\pi}{\mathrm{10}}\right)\right) \\ $$$${we}\:{can}\:{find}\:\:{exact}\:{tg}\left(\frac{\pi}{\mathrm{5}}\right),{and}\:{tg}\left(\frac{\mathrm{3}\pi}{\mathrm{10}}\right) \\ $$$$ \\ $$
Commented by TawaTawa last updated on 27/Jan/20
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by mind is power last updated on 27/Jan/20
$${thak}\:{you}\:,{withe}\:{pleasur} \\ $$