Menu Close

Question-79794




Question Number 79794 by mr W last updated on 28/Jan/20
Commented by mr W last updated on 28/Jan/20
Find the radii of two circles (if exist)  which touch each other and touch the  parabola and the y−axis respectively.
$${Find}\:{the}\:{radii}\:{of}\:{two}\:{circles}\:\left({if}\:{exist}\right) \\ $$$${which}\:{touch}\:{each}\:{other}\:{and}\:{touch}\:{the} \\ $$$${parabola}\:{and}\:{the}\:{y}−{axis}\:{respectively}. \\ $$
Commented by key of knowledge last updated on 28/Jan/20
C{O(x=(a/(1+(√((4a^2 )/(1+4a^2 ))))) , y=(((a−x)/(2a)))+a^2 ) ; r=x }  circle C for ∀a touch y=x^2    and if circle C_1  and C_2  touch each other⇒2(√(r_2 r_1 ))=y_(o2) −y_(o1)
$$\mathrm{C}\left\{\mathrm{O}\left(\mathrm{x}=\frac{\mathrm{a}}{\mathrm{1}+\sqrt{\frac{\mathrm{4a}^{\mathrm{2}} }{\mathrm{1}+\mathrm{4a}^{\mathrm{2}} }}}\:,\:\mathrm{y}=\left(\frac{\mathrm{a}−\mathrm{x}}{\mathrm{2a}}\right)+\mathrm{a}^{\mathrm{2}} \right)\:;\:\mathrm{r}=\mathrm{x}\:\right\} \\ $$$$\mathrm{circle}\:\mathrm{C}\:\mathrm{for}\:\forall\mathrm{a}\:\mathrm{touch}\:\mathrm{y}=\mathrm{x}^{\mathrm{2}} \: \\ $$$$\mathrm{and}\:\mathrm{if}\:\mathrm{circle}\:\mathrm{C}_{\mathrm{1}} \:\mathrm{and}\:\mathrm{C}_{\mathrm{2}} \:\mathrm{touch}\:\mathrm{each}\:\mathrm{other}\Rightarrow\mathrm{2}\sqrt{\mathrm{r}_{\mathrm{2}} \mathrm{r}_{\mathrm{1}} }=\mathrm{y}_{\mathrm{o2}} −\mathrm{y}_{\mathrm{o1}} \\ $$
Answered by ajfour last updated on 28/Jan/20

Leave a Reply

Your email address will not be published. Required fields are marked *