Menu Close

Question-80204




Question Number 80204 by jagoll last updated on 01/Feb/20
Commented by Tony Lin last updated on 01/Feb/20
28(x+y+z)=363+(x−z)  if x+y+z≥14  x−z≥29>x+y+z(false)  if x+y+z=13  then x−z=1<x+y+z  if x+y+z≤12  z−x≥27>x+y+z(false)  therefore  10x+10y+10z=130
$$\mathrm{28}\left({x}+{y}+{z}\right)=\mathrm{363}+\left({x}−{z}\right) \\ $$$${if}\:{x}+{y}+{z}\geqslant\mathrm{14} \\ $$$${x}−{z}\geqslant\mathrm{29}>{x}+{y}+{z}\left({false}\right) \\ $$$${if}\:{x}+{y}+{z}=\mathrm{13} \\ $$$${then}\:{x}−{z}=\mathrm{1}<{x}+{y}+{z} \\ $$$${if}\:{x}+{y}+{z}\leqslant\mathrm{12} \\ $$$${z}−{x}\geqslant\mathrm{27}>{x}+{y}+{z}\left({false}\right) \\ $$$${therefore} \\ $$$$\mathrm{10}{x}+\mathrm{10}{y}+\mathrm{10}{z}=\mathrm{130} \\ $$
Commented by jagoll last updated on 01/Feb/20
thank you sir
$${thank}\:{you}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *