Menu Close

Question-80206




Question Number 80206 by peter frank last updated on 01/Feb/20
Commented by mr W last updated on 01/Feb/20
the language of the question is not  to understand.  please make the question clear! what  exact is to prove?
$${the}\:{language}\:{of}\:{the}\:{question}\:{is}\:{not} \\ $$$${to}\:{understand}. \\ $$$${please}\:{make}\:{the}\:{question}\:{clear}!\:{what} \\ $$$${exact}\:{is}\:{to}\:{prove}?\: \\ $$
Commented by mr W last updated on 01/Feb/20
Answered by mr W last updated on 01/Feb/20
say the tangent passing the given point is  y−(√(a^2 +b^2 ))=m(x−(a^2 /( (√(a^2 −b^2 )))))  y=mx+(√(a^2 +b^2 ))−((ma^2 )/( (√(a^2 −b^2 ))))  we have  m^2 a^2 +b^2 =((√(a^2 +b^2 ))−((ma^2 )/( (√(a^2 −b^2 )))))^2   m^2 a^2 +b^2 =a^2 +b^2 +((m^2 a^4 )/(a^2 −b^2 ))−((2ma^2 (√(a^2 +b^2 )))/( (√(a^2 −b^2 ))))  ((m^2 b^2 )/(a^2 −b^2 ))−((2m(√(a^2 +b^2 )))/( (√(a^2 −b^2 ))))+1=0  b^2 m^2 −2m(√(a^4 −b^4 ))+a^2 −b^2 =0  ⇒m=((((√(a^2 +b^2 ))±a)(√(a^2 −b^2 )))/b^2 )  tangent line 1:  y−(√(a^2 +b^2 ))=[((((√(a^2 +b^2 ))−a)(√(a^2 −b^2 )))/b^2 )](x−(a^2 /( (√(a^2 −b^2 )))))  intersection with y−axis at point P:  y_P −(√(a^2 +b^2 ))=[((((√(a^2 +b^2 ))−a)(√(a^2 −b^2 )))/b^2 )](−(a^2 /( (√(a^2 −b^2 )))))  ⇒y_P =((a^2 /b^2 ))a−((a^2 /b^2 )−1)(√(a^2 +b^2 ))  tangent line 2:  y−(√(a^2 +b^2 ))=[((((√(a^2 +b^2 ))+a)(√(a^2 −b^2 )))/b^2 )](x−(a^2 /( (√(a^2 −b^2 )))))  intersection with x−axis at point Q:  0−(√(a^2 +b^2 ))=[((((√(a^2 +b^2 ))+a)(√(a^2 −b^2 )))/b^2 )](x_Q −(a^2 /( (√(a^2 −b^2 )))))  ⇒x_Q =((a(√(a^2 +b^2 ))−b^2 )/( (√(a^2 −b^2 ))))  ......
$${say}\:{the}\:{tangent}\:{passing}\:{the}\:{given}\:{point}\:{is} \\ $$$${y}−\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }={m}\left({x}−\frac{{a}^{\mathrm{2}} }{\:\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}\right) \\ $$$${y}={mx}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }−\frac{{ma}^{\mathrm{2}} }{\:\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }} \\ $$$${we}\:{have} \\ $$$${m}^{\mathrm{2}} {a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\left(\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }−\frac{{ma}^{\mathrm{2}} }{\:\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}\right)^{\mathrm{2}} \\ $$$${m}^{\mathrm{2}} {a}^{\mathrm{2}} +{b}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\frac{{m}^{\mathrm{2}} {a}^{\mathrm{4}} }{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }−\frac{\mathrm{2}{ma}^{\mathrm{2}} \sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{\:\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }} \\ $$$$\frac{{m}^{\mathrm{2}} {b}^{\mathrm{2}} }{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }−\frac{\mathrm{2}{m}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{\:\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}+\mathrm{1}=\mathrm{0} \\ $$$${b}^{\mathrm{2}} {m}^{\mathrm{2}} −\mathrm{2}{m}\sqrt{{a}^{\mathrm{4}} −{b}^{\mathrm{4}} }+{a}^{\mathrm{2}} −{b}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{m}=\frac{\left(\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\pm{a}\right)\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}{{b}^{\mathrm{2}} } \\ $$$${tangent}\:{line}\:\mathrm{1}: \\ $$$${y}−\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }=\left[\frac{\left(\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }−{a}\right)\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}{{b}^{\mathrm{2}} }\right]\left({x}−\frac{{a}^{\mathrm{2}} }{\:\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}\right) \\ $$$${intersection}\:{with}\:{y}−{axis}\:{at}\:{point}\:{P}: \\ $$$${y}_{{P}} −\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }=\left[\frac{\left(\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }−{a}\right)\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}{{b}^{\mathrm{2}} }\right]\left(−\frac{{a}^{\mathrm{2}} }{\:\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}\right) \\ $$$$\Rightarrow{y}_{{P}} =\left(\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\right){a}−\left(\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }−\mathrm{1}\right)\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$${tangent}\:{line}\:\mathrm{2}: \\ $$$${y}−\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }=\left[\frac{\left(\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }+{a}\right)\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}{{b}^{\mathrm{2}} }\right]\left({x}−\frac{{a}^{\mathrm{2}} }{\:\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}\right) \\ $$$${intersection}\:{with}\:{x}−{axis}\:{at}\:{point}\:{Q}: \\ $$$$\mathrm{0}−\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }=\left[\frac{\left(\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }+{a}\right)\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}{{b}^{\mathrm{2}} }\right]\left({x}_{{Q}} −\frac{{a}^{\mathrm{2}} }{\:\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}\right) \\ $$$$\Rightarrow{x}_{{Q}} =\frac{{a}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }−{b}^{\mathrm{2}} }{\:\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }} \\ $$$$…… \\ $$
Commented by peter frank last updated on 01/Feb/20
thank you sir.
$${thank}\:{you}\:{sir}. \\ $$
Commented by mr W last updated on 01/Feb/20
solution is not complete yet! it can  not be completed since it′s not clear  what should be proved.   where did you get the question? can  you check the question once more?
$${solution}\:{is}\:{not}\:{complete}\:{yet}!\:{it}\:{can} \\ $$$${not}\:{be}\:{completed}\:{since}\:{it}'{s}\:{not}\:{clear} \\ $$$${what}\:{should}\:{be}\:{proved}.\: \\ $$$${where}\:{did}\:{you}\:{get}\:{the}\:{question}?\:{can} \\ $$$${you}\:{check}\:{the}\:{question}\:{once}\:{more}? \\ $$
Commented by peter frank last updated on 01/Feb/20
I check the question on the paper it seems no problem on typing  may  language used
$${I}\:{check}\:{the}\:{question}\:{on}\:{the}\:{paper}\:{it}\:{seems}\:{no}\:{problem}\:{on}\:{typing}\:\:{may} \\ $$$${language}\:{used} \\ $$$$ \\ $$
Commented by mr W last updated on 01/Feb/20
Commented by mr W last updated on 01/Feb/20
if you understand this, please explain  me what is meant with it.
$${if}\:{you}\:{understand}\:{this},\:{please}\:{explain} \\ $$$${me}\:{what}\:{is}\:{meant}\:{with}\:{it}. \\ $$
Commented by peter frank last updated on 01/Feb/20
i think there two case inside  case 1  interception of ordinate  through the focus  case 2  intercept on the ordinate  near distance equal to   major axis
$${i}\:{think}\:{there}\:{two}\:{case}\:{inside} \\ $$$${case}\:\mathrm{1} \\ $$$${interception}\:{of}\:{ordinate} \\ $$$${through}\:{the}\:{focus} \\ $$$${case}\:\mathrm{2} \\ $$$${intercept}\:{on}\:{the}\:{ordinate} \\ $$$${near}\:{distance}\:{equal}\:{to}\: \\ $$$${major}\:{axis} \\ $$
Commented by mr W last updated on 01/Feb/20
i totally don′t understand what you  are saying, maybe you either.  what should be proved?  i have given a diagram above  in the comment to the question,  the diagram shown the situation.  please use this diagram for your  explanation. if you also don′t  understand the question, just say it,  and we forget the question.
$${i}\:{totally}\:{don}'{t}\:{understand}\:{what}\:{you} \\ $$$${are}\:{saying},\:{maybe}\:{you}\:{either}. \\ $$$${what}\:{should}\:{be}\:{proved}? \\ $$$${i}\:{have}\:{given}\:{a}\:{diagram}\:{above} \\ $$$${in}\:{the}\:{comment}\:{to}\:{the}\:{question}, \\ $$$${the}\:{diagram}\:{shown}\:{the}\:{situation}. \\ $$$${please}\:{use}\:{this}\:{diagram}\:{for}\:{your} \\ $$$${explanation}.\:{if}\:{you}\:{also}\:{don}'{t} \\ $$$${understand}\:{the}\:{question},\:{just}\:{say}\:{it}, \\ $$$${and}\:{we}\:{forget}\:{the}\:{question}. \\ $$
Commented by peter frank last updated on 01/Feb/20
to be honest sir i dont  understand.that why my  explanation was out of point
$${to}\:{be}\:{honest}\:{sir}\:{i}\:{dont} \\ $$$${understand}.{that}\:{why}\:{my} \\ $$$${explanation}\:{was}\:{out}\:{of}\:{point} \\ $$
Commented by mr W last updated on 01/Feb/20
alright, i see.
$${alright},\:{i}\:{see}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *