Menu Close

Question-80209




Question Number 80209 by peter frank last updated on 01/Feb/20
Commented by mathmax by abdo last updated on 01/Feb/20
z+(1/z) =−1 ⇒z^2  +1=−z ⇒z^2  +z+1=0  Δ=1−4=−3 ⇒z_1 =((−1+i(√3))/2)=e^((i2π)/3)   and z_2 =((−1−i(√3))/2)=e^(−((i2π)/3))   z=z_1  ⇒z^5  +(1/z^5 ) =e^((i10π)/3)  +e^(−((i10π)/3))  =2cos(((10π)/3))=2cos(4π−((2π)/3))  =2cos(((2π)/3))=2×(−(1/2))=−1  z=z_2  we get the same value because z_2 =conj(z_1 )  for z^(11)  +(1/z^(11) )  z=z_1 =⇒z^(11)  +(1/z^(11) ) =e^((i22π)/3)  +e^(−((i22π)/3))  =2cos(((22π)/3))  =2cos(8π−((2π)/3)) =2cos(((2π)/3))=−1  z=z_2  we get the same value
z+1z=1z2+1=zz2+z+1=0Δ=14=3z1=1+i32=ei2π3andz2=1i32=ei2π3z=z1z5+1z5=ei10π3+ei10π3=2cos(10π3)=2cos(4π2π3)=2cos(2π3)=2×(12)=1z=z2wegetthesamevaluebecausez2=conj(z1)forz11+1z11z=z1=⇒z11+1z11=ei22π3+ei22π3=2cos(22π3)=2cos(8π2π3)=2cos(2π3)=1z=z2wegetthesamevalue
Answered by som(math1967) last updated on 01/Feb/20
(z+(1/z))^2 =1⇒z^2 +(1/z^2 )=1−2=−1  again (z+(1/z))^3 =−1  z^3 +(1/z^3 ) +3(z+(1/z))=−1  z^3 +(1/z^3 )=−1+3=2  ∴(z^2 +(1/z^2 ))(z^3 +(1/z^3 ))=(−1)(2)=−2  z^5 +(1/z^5 ) +z+(1/z)=−2  ∴z^5 +(1/z^5 )=−2+1=−1 (proved)  Again (z^3 +(1/z^3 ))^2 =4  z^6 +(1/z^6 )=4−2=2  ∴(z^5 +(1/z^5 ))(z^6 +(1/z^6 ))=(−1)(2)   z^(11) +(1/z^(11) ) +z+(1/z)=−2  ∴z^(11) +(1/z^(11) )=−2+1=−1 ans
(z+1z)2=1z2+1z2=12=1again(z+1z)3=1z3+1z3+3(z+1z)=1z3+1z3=1+3=2(z2+1z2)(z3+1z3)=(1)(2)=2z5+1z5+z+1z=2z5+1z5=2+1=1(proved)Again(z3+1z3)2=4z6+1z6=42=2(z5+1z5)(z6+1z6)=(1)(2)z11+1z11+z+1z=2z11+1z11=2+1=1ans
Answered by mr W last updated on 01/Feb/20
z+(1/z)=−1  z^2 +z+1=0  z=((−1±i(√3))/2)=−{cos (±(π/3))+sin (±(π/3)) i}=−e^(±(π/3)i)   z^n +(1/z^n )=(−1)^n [e^(±((nπ)/3)i) +e^(∓((nπ)/3)i) ]  =2(−1)^n cos (±((nπ)/3))  =2(−1)^n cos (((nπ)/3))  ⇒z^n +(1/z^n )=2(−1)^n cos (((nπ)/3))  n=5:  z^5 +(1/z^5 )=2(−1)^5 cos (((5π)/3))=−2×(1/2)=−1  n=11:  z^(11) +(1/z^(11) )=2(−1)^(11) cos (((11π)/3))=−2×(1/2)=−1  n=3:  z^3 +(1/z^3 )=2(−1)^3 cos (((3π)/3))=−2×(−1)=2  n=12:  z^(12) +(1/z^(12) )=2(−1)^(12) cos (((12π)/3))=2×1=2
z+1z=1z2+z+1=0z=1±i32={cos(±π3)+sin(±π3)i}=e±π3izn+1zn=(1)n[e±nπ3i+enπ3i]=2(1)ncos(±nπ3)=2(1)ncos(nπ3)zn+1zn=2(1)ncos(nπ3)n=5:z5+1z5=2(1)5cos(5π3)=2×12=1n=11:z11+1z11=2(1)11cos(11π3)=2×12=1n=3:z3+1z3=2(1)3cos(3π3)=2×(1)=2n=12:z12+1z12=2(1)12cos(12π3)=2×1=2
Commented by jagoll last updated on 01/Feb/20
if x+(1/x)= −2   that x^6  +(1/x^6 ) = 2(−2)^(6 ) ×cos (((6π)/3))       = 128. that right sir
ifx+1x=2thatx6+1x6=2(2)6×cos(6π3)=128.thatrightsir
Commented by mr W last updated on 01/Feb/20
that′s not correct sir!
thatsnotcorrectsir!
Commented by peter frank last updated on 01/Feb/20
thank you all
thankyouall
Commented by mr W last updated on 01/Feb/20
if x+(1/x)= −2   ⇒x=−1  ⇒x^3 +(1/x^3 )=−2  ⇒x^6 +(1/x^6 )=2
ifx+1x=2x=1x3+1x3=2x6+1x6=2
Commented by jagoll last updated on 01/Feb/20
special means only for form   x+(1/x)=−1
specialmeansonlyforformx+1x=1

Leave a Reply

Your email address will not be published. Required fields are marked *