Question Number 80432 by Power last updated on 03/Feb/20
Commented by mr W last updated on 03/Feb/20
Commented by john santu last updated on 03/Feb/20
$${very}\:{small}\:{sir}.\:{haha} \\ $$
Commented by Power last updated on 03/Feb/20
$$\mathrm{solution}\:\mathrm{sir} \\ $$
Commented by mr W last updated on 03/Feb/20
Commented by abdomathmax last updated on 03/Feb/20
$${I}=\int\:{e}^{\mathrm{3}{x}} {sin}^{\mathrm{4}} {xdx}\:\Rightarrow{I}\:=\int\:{e}^{\mathrm{3}{x}} \left(\frac{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}}\right)^{\mathrm{2}} {dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int\:{e}^{\mathrm{3}{x}} \left({cos}^{\mathrm{2}} \left(\mathrm{2}{x}\right)−\mathrm{2}{cos}\left(\mathrm{2}{x}\right)+\mathrm{1}\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int\:\:{e}^{\mathrm{3}{x}} \left(\frac{\mathrm{1}+{cos}\left(\mathrm{4}{x}\right)}{\mathrm{2}}−\mathrm{2}\:{cos}\left(\mathrm{2}{x}\right)+\mathrm{1}\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\int\:{e}^{\mathrm{3}{x}} \left(\mathrm{1}\:+{cos}\left(\mathrm{4}{x}\right)−\mathrm{4}{cos}\left(\mathrm{2}{x}\right)+\mathrm{2}\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\int\:{e}^{\mathrm{3}{x}} \left(\mathrm{3}\:+{cos}\left(\mathrm{4}{x}\right)−\mathrm{4}{cos}\left(\mathrm{2}{x}\right)\right){dx} \\ $$$$=\frac{\mathrm{3}}{\mathrm{8}}\int\:{e}^{\mathrm{3}{x}} {dx}\:+\frac{\mathrm{1}}{\mathrm{8}}\int\:\:{e}^{\mathrm{3}{x}} {cos}\left(\mathrm{4}{x}\right){dx}−\frac{\mathrm{1}}{\mathrm{2}}\int\:{e}^{\mathrm{3}{x}} {cos}\left(\mathrm{2}{x}\right){dx} \\ $$$$\int\:{e}^{\mathrm{3}{x}} {dx}\:=\frac{\mathrm{1}}{\mathrm{3}}{e}^{\mathrm{3}{x}} \:+{c}_{\mathrm{0}} \\ $$$$\int\:{e}^{\mathrm{3}{x}} {cos}\left(\mathrm{4}{x}\right){dx}\:={Re}\left(\int\:{e}^{\mathrm{3}{x}+\mathrm{4}{ix}} {dx}\right) \\ $$$$\int\:\:{e}^{\left(\mathrm{3}+\mathrm{4}{i}\right){x}} {dx}\:=\frac{\mathrm{1}}{\mathrm{3}+\mathrm{4}{i}}{e}^{\left(\mathrm{3}+\mathrm{4}{i}\right){x}} \:+{c} \\ $$$$=\frac{\mathrm{3}+\mathrm{4}{i}}{\mathrm{25}}{e}^{\mathrm{3}{x}} \left({cos}\left(\mathrm{4}{x}\right)+{isin}\left(\mathrm{4}{x}\right)\right)\:+{c} \\ $$$$=\frac{{e}^{\mathrm{3}{x}} }{\mathrm{25}}\left(\mathrm{3}+\mathrm{4}{i}\right)\left\{{cos}\left(\mathrm{4}{x}\right)+{isin}\left(\mathrm{4}{x}\right)\right\}\:+{c} \\ $$$$=\frac{{e}^{\mathrm{3}{x}} }{\mathrm{25}}\left\{\mathrm{3}{cos}\left(\mathrm{4}{x}\right)+\mathrm{3}{isin}\left(\mathrm{4}{x}\right)+\mathrm{4}{icos}\left(\mathrm{4}{x}\right)−\mathrm{4}{sin}\left(\mathrm{4}{x}\right)\right\} \\ $$$$\Rightarrow\int\:{e}^{\mathrm{3}{x}} {cos}\left(\mathrm{4}{x}\right){dx} \\ $$$$=\frac{{e}^{\mathrm{3}{x}} }{\mathrm{25}}\left(\:\mathrm{3}{cos}\left(\mathrm{4}{x}\right)−\mathrm{4}{sin}\left(\mathrm{4}{x}\right)\right)\:+{c}_{\mathrm{1}} \\ $$$$\int\:{e}^{\mathrm{3}{x}} {cos}\left(\mathrm{2}{x}\right){dx}\:={Re}\left(\int\:{e}^{\left(\mathrm{3}+\mathrm{2}{i}\right){x}} {dx}\right) \\ $$$$\int\:\:{e}^{\left(\mathrm{3}+\mathrm{2}{i}\right){x}} {dx}\:=\frac{\mathrm{1}}{\mathrm{3}+\mathrm{2}{i}}{e}^{\left(\mathrm{3}+\mathrm{2}{i}\right){x}} \:+{c} \\ $$$$=\frac{\mathrm{3}−\mathrm{2}{i}}{\mathrm{13}}\:{e}^{\mathrm{3}{x}} \left({cos}\left(\mathrm{2}{x}\right)+{isin}\left(\mathrm{2}{x}\right)\right) \\ $$$$=\frac{{e}^{\mathrm{3}{x}} }{\mathrm{13}}\left\{\:\mathrm{3}{cos}\left(\mathrm{2}{x}\right)+\mathrm{3}{isin}\left(\mathrm{2}{x}\right)−\mathrm{2}{icos}\left(\mathrm{2}{x}\right)\:+\mathrm{2}{sin}\left(\mathrm{2}{x}\right)\right\} \\ $$$$\Rightarrow\int\:{e}^{\mathrm{3}{x}} {cos}\left(\mathrm{2}{x}\right){dx} \\ $$$$=\frac{{e}^{\mathrm{3}{x}} }{\mathrm{13}}\left\{\mathrm{3}{cos}\left(\mathrm{2}{x}\right)+\mathrm{2}{sin}\left(\mathrm{2}{x}\right)\right\}\:\Rightarrow \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{8}}{e}^{\mathrm{3}{x}} \:+\frac{{e}^{\mathrm{3}{x}} }{\mathrm{8}×\mathrm{25}}\left\{\mathrm{3}{cos}\left(\mathrm{4}{x}\right)−\mathrm{4}{sin}\left(\mathrm{4}{x}\right)\right\} \\ $$$$−\frac{{e}^{\mathrm{3}{x}} }{\mathrm{26}}\left\{\mathrm{3}{cos}\left(\mathrm{2}{x}\right)+\mathrm{2}{sin}\left(\mathrm{2}{x}\right)\right\}\:+{C} \\ $$
Commented by Power last updated on 03/Feb/20
$$\mathrm{thanks} \\ $$
Commented by Tony Lin last updated on 03/Feb/20
$${sin}^{\mathrm{4}} {x}=\left({sin}^{\mathrm{2}} {x}\right)^{\mathrm{2}} =\left(\frac{\mathrm{1}−{cos}\mathrm{2}{x}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}+{cos}^{\mathrm{2}} \mathrm{2}{x}−\mathrm{2}{cos}\mathrm{2}{x}}{\mathrm{4}} \\ $$$$=\frac{\mathrm{1}+\left(\frac{\mathrm{1}+{cos}\mathrm{4}{x}}{\mathrm{2}}\:\right)\:−\mathrm{2}{cos}\mathrm{2}{x}}{\mathrm{4}} \\ $$$$=\frac{\mathrm{3}}{\mathrm{8}}+\frac{{cos}\mathrm{4}{x}}{\mathrm{8}}−\frac{{cos}\mathrm{2}{x}}{\mathrm{2}} \\ $$$$\int{e}^{\mathrm{3}{x}} {sin}^{\mathrm{4}} {xdx} \\ $$$$=\frac{\mathrm{3}}{\mathrm{8}}\int{e}^{\mathrm{3}{x}} {dx}+\frac{\mathrm{1}}{\mathrm{8}}\int{e}^{\mathrm{3}{x}} {cos}\mathrm{4}{xdx}−\frac{\mathrm{1}}{\mathrm{2}}\int{e}^{\mathrm{3}{x}} {cos}\mathrm{2}{xdx} \\ $$$$\int{e}^{\mathrm{3}{x}} {cos}\mathrm{4}{xdx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}{e}^{\mathrm{3}{x}} {cos}\mathrm{4}{x}+\frac{\mathrm{4}}{\mathrm{3}}\int{e}^{\mathrm{3}{x}} {sin}\mathrm{4}{xdx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}{e}^{\mathrm{3}{x}} {cos}\mathrm{4}{x}+\frac{\mathrm{4}}{\mathrm{3}}\left(\frac{\mathrm{1}}{\mathrm{3}}{e}^{\mathrm{3}{x}} {sin}\mathrm{4}{x}−\frac{\mathrm{4}}{\mathrm{3}}\int{e}^{\mathrm{3}{x}} {cos}\mathrm{4}{xdx}\right) \\ $$$$\frac{\mathrm{25}}{\mathrm{9}}\int{e}^{\mathrm{3}{x}} {cos}\mathrm{4}{xdx}=\frac{\mathrm{1}}{\mathrm{3}}{e}^{\mathrm{3}{x}} {cos}\mathrm{4}{x}+\frac{\mathrm{4}}{\mathrm{9}}{e}^{\mathrm{3}{x}} {sin}\mathrm{4}{x}+{c}_{\mathrm{1}} \\ $$$$\Rightarrow\int{e}^{\mathrm{3}{x}} {cos}\mathrm{4}{xdx}=\frac{\mathrm{3}}{\mathrm{25}}{e}^{\mathrm{3}{x}} {cos}\mathrm{4}{x}+\frac{\mathrm{4}}{\mathrm{25}}{e}^{\mathrm{3}{x}} {sin}\mathrm{4}{x}+{c}_{\mathrm{2}} \\ $$$$\int{e}^{\mathrm{3}{x}} {cos}\mathrm{2}{xdx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}{e}^{\mathrm{3}{x}} {cos}\mathrm{2}{x}+\frac{\mathrm{2}}{\mathrm{3}}\int{e}^{\mathrm{3}{x}} {sin}\mathrm{2}{xdx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}{e}^{\mathrm{3}{x}} {cos}\mathrm{2}{x}+\frac{\mathrm{2}}{\mathrm{3}}\left(\frac{\mathrm{1}}{\mathrm{3}}{e}^{\mathrm{3}{x}} {sin}\mathrm{2}{x}−\frac{\mathrm{2}}{\mathrm{3}}\int{e}^{\mathrm{3}{x}} {cos}\mathrm{2}{xdx}\right) \\ $$$$\frac{\mathrm{13}}{\mathrm{9}}\int{e}^{\mathrm{3}{x}} {cos}\mathrm{2}{xdx}=\frac{\mathrm{1}}{\mathrm{3}}{e}^{\mathrm{3}{x}} {cos}\mathrm{2}{x}+\frac{\mathrm{2}}{\mathrm{9}}{e}^{\mathrm{3}{x}} {sin}\mathrm{2}{x}+{c}_{\mathrm{3}} \\ $$$$\Rightarrow\int{e}^{\mathrm{3}{x}} {cos}\mathrm{2}{xdx}=\frac{\mathrm{3}}{\mathrm{13}}{e}^{\mathrm{3}{x}} {cos}\mathrm{2}{x}+\frac{\mathrm{2}}{\mathrm{13}}{e}^{\mathrm{3}{x}} {sin}\mathrm{2}{x}+{c}_{\mathrm{4}} \\ $$$$\int{e}^{\mathrm{3}{x}} {dx}=\frac{{e}^{\mathrm{3}{x}} }{\mathrm{3}}+{c}_{\mathrm{5}} \\ $$$$\therefore\int{e}^{\mathrm{3}{x}} {sin}^{\mathrm{4}} {xdx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}{e}^{\mathrm{3}{x}} +\frac{\mathrm{3}}{\mathrm{200}}{e}^{\mathrm{3}{x}} {cos}\mathrm{4}{x}+\frac{\mathrm{1}}{\mathrm{50}}{e}^{\mathrm{3}{x}} {sin}\mathrm{4}{x}− \\ $$$$\frac{\mathrm{3}}{\mathrm{26}}{e}^{\mathrm{3}{x}} {cos}\mathrm{2}{x}−\frac{\mathrm{1}}{\mathrm{13}}{e}^{\mathrm{3}{x}} {sin}\mathrm{2}{x}+{c} \\ $$