Menu Close

Question-80442




Question Number 80442 by Power last updated on 03/Feb/20
Commented by john santu last updated on 03/Feb/20
f ′(a) hahaha
$${f}\:'\left({a}\right)\:{hahaha} \\ $$
Commented by Power last updated on 03/Feb/20
solution sir pls
$$\mathrm{solution}\:\mathrm{sir}\:\mathrm{pls} \\ $$
Commented by mr W last updated on 03/Feb/20
let a=x+Δh  lim_(x→a) ((f(x)−f(a))/(x−a))  =lim_(x→a) ((f(a)−f(x))/(a−x))  =lim_(Δh→0) ((f(x+Δh)−f(x))/(Δh)) ⇒ definition of ((df(x))/dx)  =f′(x) (or =f′(a) in same way)
$${let}\:{a}={x}+\Delta{h} \\ $$$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\frac{{f}\left({x}\right)−{f}\left({a}\right)}{{x}−{a}} \\ $$$$=\underset{{x}\rightarrow{a}} {\mathrm{lim}}\frac{{f}\left({a}\right)−{f}\left({x}\right)}{{a}−{x}} \\ $$$$=\underset{\Delta{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{f}\left({x}+\Delta{h}\right)−{f}\left({x}\right)}{\Delta{h}}\:\Rightarrow\:{definition}\:{of}\:\frac{{df}\left({x}\right)}{{dx}} \\ $$$$={f}'\left({x}\right)\:\left({or}\:={f}'\left({a}\right)\:{in}\:{same}\:{way}\right) \\ $$
Commented by msup trace by abdo last updated on 03/Feb/20
if f is not derivable at a this  limit dont exist or infinite...!
$${if}\:{f}\:{is}\:{not}\:{derivable}\:{at}\:{a}\:{this} \\ $$$${limit}\:{dont}\:{exist}\:{or}\:{infinite}…! \\ $$
Answered by mind is power last updated on 03/Feb/20
nothing too say   if f(x)=∣x−a∣ we get +_− 1  depend in how x→a  if f is differentiable arround a  ⇒f(x)=f(a)+f′(a)(x−a)+o(x−a)  ⇒((f(x)−f(a))/(x−a))=f′(a)+o(1)  ⇒lim_(x→a) ((f(x)−f(a))/(x−a))=f′(a)
$${nothing}\:{too}\:{say}\: \\ $$$${if}\:{f}\left({x}\right)=\mid{x}−{a}\mid\:{we}\:{get}\:\underset{−} {+}\mathrm{1}\:\:{depend}\:{in}\:{how}\:{x}\rightarrow{a} \\ $$$${if}\:{f}\:{is}\:{differentiable}\:{arround}\:{a} \\ $$$$\Rightarrow{f}\left({x}\right)={f}\left({a}\right)+{f}'\left({a}\right)\left({x}−{a}\right)+{o}\left({x}−{a}\right) \\ $$$$\Rightarrow\frac{{f}\left({x}\right)−{f}\left({a}\right)}{{x}−{a}}={f}'\left({a}\right)+{o}\left(\mathrm{1}\right) \\ $$$$\Rightarrow\underset{{x}\rightarrow{a}} {\mathrm{lim}}\frac{{f}\left({x}\right)−{f}\left({a}\right)}{{x}−{a}}={f}'\left({a}\right) \\ $$
Commented by Power last updated on 03/Feb/20
thanks
$$\mathrm{thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *