Menu Close

Question-80648




Question Number 80648 by mr W last updated on 05/Feb/20
Commented by mr W last updated on 05/Feb/20
three thin−wall tubes with identical  size and mass are released from the  state as shown.  find the time which the upper tube  takes to hit the ground.  there is no friction between the tubes,  but the ground is rough such that the  tubes can′t slip over it.
$${three}\:{thin}−{wall}\:{tubes}\:{with}\:{identical} \\ $$$${size}\:{and}\:{mass}\:{are}\:{released}\:{from}\:{the} \\ $$$${state}\:{as}\:{shown}. \\ $$$${find}\:{the}\:{time}\:{which}\:{the}\:{upper}\:{tube} \\ $$$${takes}\:{to}\:{hit}\:{the}\:{ground}. \\ $$$${there}\:{is}\:{no}\:{friction}\:{between}\:{the}\:{tubes}, \\ $$$${but}\:{the}\:{ground}\:{is}\:{rough}\:{such}\:{that}\:{the} \\ $$$${tubes}\:{can}'{t}\:{slip}\:{over}\:{it}. \\ $$
Commented by ajfour last updated on 05/Feb/20
Commented by ajfour last updated on 05/Feb/20
V=−(dy/dt) ,  A=(dV/dt)  y=2rsin θ  ⇒ −V=2rcos θ((dθ/dt))  friction on right tube is f^←    fr=(mr^2 )(a/r)   ⇒  f=ma  Ncos θ−f=m(dv/dt) = ma  ⇒  N=((2ma)/(cos θ))  mg−2Nsin θ=((mVdV)/dy) = mA  ⇒  mg−((4masin θ)/(cos θ))=mA  ⇒  A=g−4atan θ  y=2rsin θ  ,  x=2rcos θ  Vsin θ=vcos θ         .......(I)  V=((vcos θ)/(sin θ))=−2rcos θ((dθ/dt))  ⇒   v=−2rsin θ((dθ/dt))    .....(II)  differentiating (I)  ⇒  V=vcot θ  ⇒  Asin θ+Vcos θ(dθ/dt) =                    acos θ−vsin θ(dθ/dt)  ⇒ gsin θ−4asin θtan θ      +vcos θcot θ((dθ/dt))  =           acos θ−vsin θ((dθ/dt))  ⇒ gsin θ−4(((sin^2 θ)/(cos θ)))(dv/dt)  +((vcos^2 θ)/(sin θ))((dθ/dt))=(dv/dt)cos θ−vsin θ(dθ/dt)  using (II)  mgr(√3)−2mgrsin θ      = 2mv^2 +((mV^( 2) )/2)  gr(√3)−2grsin θ=2v^2 +((v^2 cos^2 θ)/(2sin^2 θ))  v^2 =((2gr((√3)−2sin θ)sin^2 θ)/(3+sin^2 θ))  ⇒ 2v(dv/dt)=2gr{(((3+sin^2 θ)(2(√3)sin θcos θ−6sin^2 θcos θ)−2sin θcos θ((√3)−2sin θ)sin^2 θ)/((1+sin^2 θ)^2 ))}  a=(dv/dt)= 0  ⇒ N=0    ⇒   (3+sin^2 θ)(2(√3)cos θ−6sin θcos θ)=2cos θ((√3)−2sin θ)sin^2 θ  θ ≈ 33.92046°  .....
$${V}=−\frac{{dy}}{{dt}}\:,\:\:{A}=\frac{{dV}}{{dt}} \\ $$$${y}=\mathrm{2}{r}\mathrm{sin}\:\theta\:\:\Rightarrow\:−{V}=\mathrm{2}{r}\mathrm{cos}\:\theta\left(\frac{{d}\theta}{{dt}}\right) \\ $$$${friction}\:{on}\:{right}\:{tube}\:{is}\:\overset{\leftarrow} {{f}} \\ $$$$\:{fr}=\left({mr}^{\mathrm{2}} \right)\frac{{a}}{{r}}\:\:\:\Rightarrow\:\:{f}={ma} \\ $$$${N}\mathrm{cos}\:\theta−{f}={m}\frac{{dv}}{{dt}}\:=\:{ma} \\ $$$$\Rightarrow\:\:{N}=\frac{\mathrm{2}{ma}}{\mathrm{cos}\:\theta} \\ $$$${mg}−\mathrm{2}{N}\mathrm{sin}\:\theta=\frac{{mVdV}}{{dy}}\:=\:{mA} \\ $$$$\Rightarrow\:\:{mg}−\frac{\mathrm{4}{ma}\mathrm{sin}\:\theta}{\mathrm{cos}\:\theta}={mA} \\ $$$$\Rightarrow\:\:{A}={g}−\mathrm{4}{a}\mathrm{tan}\:\theta \\ $$$${y}=\mathrm{2}{r}\mathrm{sin}\:\theta\:\:,\:\:{x}=\mathrm{2}{r}\mathrm{cos}\:\theta \\ $$$${V}\mathrm{sin}\:\theta={v}\mathrm{cos}\:\theta\:\:\:\:\:\:\:\:\:…….\left({I}\right) \\ $$$${V}=\frac{{v}\mathrm{cos}\:\theta}{\mathrm{sin}\:\theta}=−\mathrm{2}{r}\mathrm{cos}\:\theta\left(\frac{{d}\theta}{{dt}}\right) \\ $$$$\Rightarrow\:\:\:{v}=−\mathrm{2}{r}\mathrm{sin}\:\theta\left(\frac{{d}\theta}{{dt}}\right)\:\:\:\:…..\left({II}\right) \\ $$$${differentiating}\:\left({I}\right) \\ $$$$\Rightarrow\:\:{V}={v}\mathrm{cot}\:\theta \\ $$$$\Rightarrow\:\:{A}\mathrm{sin}\:\theta+{V}\mathrm{cos}\:\theta\frac{{d}\theta}{{dt}}\:=\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}\mathrm{cos}\:\theta−{v}\mathrm{sin}\:\theta\frac{{d}\theta}{{dt}} \\ $$$$\Rightarrow\:{g}\mathrm{sin}\:\theta−\mathrm{4}{a}\mathrm{sin}\:\theta\mathrm{tan}\:\theta \\ $$$$\:\:\:\:+{v}\mathrm{cos}\:\theta\mathrm{cot}\:\theta\left(\frac{{d}\theta}{{dt}}\right)\:\:=\: \\ $$$$\:\:\:\:\:\:\:\:{a}\mathrm{cos}\:\theta−{v}\mathrm{sin}\:\theta\left(\frac{{d}\theta}{{dt}}\right) \\ $$$$\Rightarrow\:{g}\mathrm{sin}\:\theta−\mathrm{4}\left(\frac{\mathrm{sin}\:^{\mathrm{2}} \theta}{\mathrm{cos}\:\theta}\right)\frac{{dv}}{{dt}} \\ $$$$+\frac{{v}\mathrm{cos}\:^{\mathrm{2}} \theta}{\mathrm{sin}\:\theta}\left(\frac{{d}\theta}{{dt}}\right)=\frac{{dv}}{{dt}}\mathrm{cos}\:\theta−{v}\mathrm{sin}\:\theta\frac{{d}\theta}{{dt}} \\ $$$${using}\:\left({II}\right) \\ $$$${mgr}\sqrt{\mathrm{3}}−\mathrm{2}{mgr}\mathrm{sin}\:\theta \\ $$$$\:\:\:\:=\:\mathrm{2}{mv}^{\mathrm{2}} +\frac{{mV}^{\:\mathrm{2}} }{\mathrm{2}} \\ $$$${gr}\sqrt{\mathrm{3}}−\mathrm{2}{gr}\mathrm{sin}\:\theta=\mathrm{2}{v}^{\mathrm{2}} +\frac{{v}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta}{\mathrm{2sin}\:^{\mathrm{2}} \theta} \\ $$$${v}^{\mathrm{2}} =\frac{\mathrm{2}{gr}\left(\sqrt{\mathrm{3}}−\mathrm{2sin}\:\theta\right)\mathrm{sin}\:^{\mathrm{2}} \theta}{\mathrm{3}+\mathrm{sin}\:^{\mathrm{2}} \theta} \\ $$$$\Rightarrow\:\mathrm{2}{v}\frac{{dv}}{{dt}}=\mathrm{2}{gr}\left\{\frac{\left(\mathrm{3}+\mathrm{sin}\:^{\mathrm{2}} \theta\right)\left(\mathrm{2}\sqrt{\mathrm{3}}\mathrm{sin}\:\theta\mathrm{cos}\:\theta−\mathrm{6sin}\:^{\mathrm{2}} \theta\mathrm{cos}\:\theta\right)−\mathrm{2sin}\:\theta\mathrm{cos}\:\theta\left(\sqrt{\mathrm{3}}−\mathrm{2sin}\:\theta\right)\mathrm{sin}\:^{\mathrm{2}} \theta}{\left(\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} \theta\right)^{\mathrm{2}} }\right\} \\ $$$${a}=\frac{{dv}}{{dt}}=\:\mathrm{0}\:\:\Rightarrow\:{N}=\mathrm{0}\:\: \\ $$$$\Rightarrow\: \\ $$$$\left(\mathrm{3}+\mathrm{sin}\:^{\mathrm{2}} \theta\right)\left(\mathrm{2}\sqrt{\mathrm{3}}\mathrm{cos}\:\theta−\mathrm{6sin}\:\theta\mathrm{cos}\:\theta\right)=\mathrm{2cos}\:\theta\left(\sqrt{\mathrm{3}}−\mathrm{2sin}\:\theta\right)\mathrm{sin}\:^{\mathrm{2}} \theta \\ $$$$\theta\:\approx\:\mathrm{33}.\mathrm{92046}° \\ $$$$….. \\ $$
Commented by mr W last updated on 05/Feb/20
super!
$${super}! \\ $$
Commented by mr W last updated on 06/Feb/20
final equation can be simplified to:  sin^3  θ+9 sin θ−3(√3)=0  sin θ=(((3(√3)((√5)+1))/2))^(1/3) −(((3(√3)((√5)−1))/2))^(1/3)   ⇒θ=33.920456°
$${final}\:{equation}\:{can}\:{be}\:{simplified}\:{to}: \\ $$$$\mathrm{sin}^{\mathrm{3}} \:\theta+\mathrm{9}\:\mathrm{sin}\:\theta−\mathrm{3}\sqrt{\mathrm{3}}=\mathrm{0} \\ $$$$\mathrm{sin}\:\theta=\sqrt[{\mathrm{3}}]{\frac{\mathrm{3}\sqrt{\mathrm{3}}\left(\sqrt{\mathrm{5}}+\mathrm{1}\right)}{\mathrm{2}}}−\sqrt[{\mathrm{3}}]{\frac{\mathrm{3}\sqrt{\mathrm{3}}\left(\sqrt{\mathrm{5}}−\mathrm{1}\right)}{\mathrm{2}}} \\ $$$$\Rightarrow\theta=\mathrm{33}.\mathrm{920456}° \\ $$
Commented by ajfour last updated on 06/Feb/20
Commented by ajfour last updated on 06/Feb/20
loss in potential energy is  mg(r(√3)−2rsin θ)  shouldn′t it be so, Sir ?
$${loss}\:{in}\:{potential}\:{energy}\:{is} \\ $$$${mg}\left({r}\sqrt{\mathrm{3}}−\mathrm{2}{r}\mathrm{sin}\:\theta\right) \\ $$$${shouldn}'{t}\:{it}\:{be}\:{so},\:{Sir}\:? \\ $$
Commented by mr W last updated on 06/Feb/20
certainly so. i had a short circuit.  sorry!
$${certainly}\:{so}.\:{i}\:{had}\:{a}\:{short}\:{circuit}. \\ $$$${sorry}! \\ $$
Commented by zainal tanjung last updated on 06/Feb/20
$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *