Menu Close

Question-80900




Question Number 80900 by ajfour last updated on 07/Feb/20
Commented by ajfour last updated on 07/Feb/20
Find the radius(equal) of the   circles.
$${Find}\:{the}\:{radius}\left({equal}\right)\:{of}\:{the}\: \\ $$$${circles}. \\ $$
Answered by ajfour last updated on 07/Feb/20
Let C(h,h^2 )  and inclination of AB be θ.  tan θ=(1/(2h)) ,  rcos θ=h ,  also    h^2 =r+rsin θ  ⇒  rsin θ=(1/2)       r^2 −(1/4)=r+(1/2)  ⇒  4r^2 −4r−3=0     r=(1/2)+(√((1/4)+(3/4)))= (3/2) .
$${Let}\:{C}\left({h},{h}^{\mathrm{2}} \right) \\ $$$${and}\:{inclination}\:{of}\:{AB}\:{be}\:\theta. \\ $$$$\mathrm{tan}\:\theta=\frac{\mathrm{1}}{\mathrm{2}{h}}\:,\:\:{r}\mathrm{cos}\:\theta={h}\:, \\ $$$${also}\:\:\:\:{h}^{\mathrm{2}} ={r}+{r}\mathrm{sin}\:\theta \\ $$$$\Rightarrow\:\:{r}\mathrm{sin}\:\theta=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:\:\:\:\:{r}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}={r}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\:\:\mathrm{4}{r}^{\mathrm{2}} −\mathrm{4}{r}−\mathrm{3}=\mathrm{0} \\ $$$$\:\:\:{r}=\frac{\mathrm{1}}{\mathrm{2}}+\sqrt{\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{3}}{\mathrm{4}}}=\:\frac{\mathrm{3}}{\mathrm{2}}\:. \\ $$
Commented by peter frank last updated on 08/Feb/20
please help 78652
$${please}\:{help}\:\mathrm{78652} \\ $$
Commented by mr W last updated on 08/Feb/20
i have solved 78652 for you.
$${i}\:{have}\:{solved}\:\mathrm{78652}\:{for}\:{you}. \\ $$
Commented by peter frank last updated on 08/Feb/20
thank you sir mr w
$${thank}\:{you}\:{sir}\:{mr}\:{w} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *