Menu Close

Question-81331




Question Number 81331 by mr W last updated on 11/Feb/20
Commented by mr W last updated on 11/Feb/20
Given: the distances from a point to  the midpoints of the sides of a triangle  are p,q,r.  Find: the side lengthes of the triangle.
$${Given}:\:{the}\:{distances}\:{from}\:{a}\:{point}\:{to} \\ $$$${the}\:{midpoints}\:{of}\:{the}\:{sides}\:{of}\:{a}\:{triangle} \\ $$$${are}\:{p},{q},{r}. \\ $$$${Find}:\:{the}\:{side}\:{lengthes}\:{of}\:{the}\:{triangle}. \\ $$
Commented by rose last updated on 11/Feb/20
sir plsss solve my questions..plsss
$${sir}\:{plsss}\:{solve}\:{my}\:{questions}..{plsss} \\ $$
Commented by mr W last updated on 11/Feb/20
NO COMMENT!
$${NO}\:{COMMENT}! \\ $$
Commented by MJS last updated on 11/Feb/20
a comment saying “no comment”...    This sentence has three erors; can you fined them?
$$\mathrm{a}\:\mathrm{comment}\:\mathrm{saying}\:“\mathrm{no}\:\mathrm{comment}''… \\ $$$$ \\ $$$$\mathrm{This}\:\mathrm{sentence}\:\mathrm{has}\:\mathrm{three}\:\mathrm{erors};\:\mathrm{can}\:\mathrm{you}\:\mathrm{fined}\:\mathrm{them}? \\ $$
Commented by $@ty@m123 last updated on 12/Feb/20
1. three  2. erors  3. fined
$$\mathrm{1}.\:{three} \\ $$$$\mathrm{2}.\:{erors} \\ $$$$\mathrm{3}.\:{fined} \\ $$
Commented by jagoll last updated on 12/Feb/20
4. no comment
$$\mathrm{4}.\:\mathrm{no}\:\mathrm{comment} \\ $$
Commented by MJS last updated on 12/Feb/20
this statement is wrong.
$$\mathrm{this}\:\mathrm{statement}\:\mathrm{is}\:\mathrm{wrong}. \\ $$
Commented by jagoll last updated on 12/Feb/20
hahaha
$$\mathrm{hahaha} \\ $$
Commented by ajfour last updated on 12/Feb/20
I believe we′ll be get a relation  of a,b,c . all three should not  generally be unique.
$${I}\:{believe}\:{we}'{ll}\:{be}\:{get}\:{a}\:{relation} \\ $$$${of}\:{a},{b},{c}\:.\:{all}\:{three}\:{should}\:{not} \\ $$$${generally}\:{be}\:{unique}. \\ $$
Commented by mr W last updated on 12/Feb/20
then it is to find the triangle with the  maxumum (or minimum) area.
$${then}\:{it}\:{is}\:{to}\:{find}\:{the}\:{triangle}\:{with}\:{the} \\ $$$${maxumum}\:\left({or}\:{minimum}\right)\:{area}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *