Menu Close

Question-81771




Question Number 81771 by Power last updated on 15/Feb/20
Commented by Power last updated on 15/Feb/20
solution
$$\mathrm{solution} \\ $$
Commented by Power last updated on 15/Feb/20
What value of the parameter  ↑  will have 2 roots ?
$$\mathrm{What}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{parameter}\:\:\uparrow\:\:\mathrm{will}\:\mathrm{have}\:\mathrm{2}\:\mathrm{roots}\:? \\ $$
Commented by mr W last updated on 15/Feb/20
two roots when −4≤a<2  one root when a=2  no root when a<−4 or a>2
$${two}\:{roots}\:{when}\:−\mathrm{4}\leqslant{a}<\mathrm{2} \\ $$$${one}\:{root}\:{when}\:{a}=\mathrm{2} \\ $$$${no}\:{root}\:{when}\:{a}<−\mathrm{4}\:{or}\:{a}>\mathrm{2} \\ $$
Answered by mr W last updated on 15/Feb/20
let f(x)=(√(4−∣2x∣))  let g(x)=x^2 +a  both functions are even, i.e.   f(−x)=f(x), g(−x)=g(x)  we only need to look at x≥0.  f(x)=(√(4−2x)) :  0≤x≤2  f(0)=2=maximum  f(2)=0=minimum  g(x)=x^2 +a :  this is a parabola opening upwards,  its lowest point is (0,a).    such that the eqn. has two roots, the  curve g(x) must intersect the curve g(x)  at two points.  we have following cases:    case 1: a>2, g(x) is too high and can′t  intersect the curve f(x) ⇒no root.    case 2: a=2, the lowest point of g(x)   coincides with the topmost point of  f(x), one intersection point ⇒one  root.    case 3: −4≤a<2, g(x) intersects with  f(x) at two points ⇒two roots.    case 4: a=−4, y=x^2 −4, y=0 ⇒x=±2.  f(x) intersects with g(x) at (−2,0) and  (2,0)⇒two roots.    case 5: a<−4, g(x) is too low and can′t  intersect with f(x)⇒no root.
$${let}\:{f}\left({x}\right)=\sqrt{\mathrm{4}−\mid\mathrm{2}{x}\mid} \\ $$$${let}\:{g}\left({x}\right)={x}^{\mathrm{2}} +{a} \\ $$$${both}\:{functions}\:{are}\:{even},\:{i}.{e}.\: \\ $$$${f}\left(−{x}\right)={f}\left({x}\right),\:{g}\left(−{x}\right)={g}\left({x}\right) \\ $$$${we}\:{only}\:{need}\:{to}\:{look}\:{at}\:{x}\geqslant\mathrm{0}. \\ $$$${f}\left({x}\right)=\sqrt{\mathrm{4}−\mathrm{2}{x}}\:: \\ $$$$\mathrm{0}\leqslant{x}\leqslant\mathrm{2} \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{2}={maximum} \\ $$$${f}\left(\mathrm{2}\right)=\mathrm{0}={minimum} \\ $$$${g}\left({x}\right)={x}^{\mathrm{2}} +{a}\:: \\ $$$${this}\:{is}\:{a}\:{parabola}\:{opening}\:{upwards}, \\ $$$${its}\:{lowest}\:{point}\:{is}\:\left(\mathrm{0},{a}\right). \\ $$$$ \\ $$$${such}\:{that}\:{the}\:{eqn}.\:{has}\:{two}\:{roots},\:{the} \\ $$$${curve}\:{g}\left({x}\right)\:{must}\:{intersect}\:{the}\:{curve}\:{g}\left({x}\right) \\ $$$${at}\:{two}\:{points}. \\ $$$${we}\:{have}\:{following}\:{cases}: \\ $$$$ \\ $$$${case}\:\mathrm{1}:\:{a}>\mathrm{2},\:{g}\left({x}\right)\:{is}\:{too}\:{high}\:{and}\:{can}'{t} \\ $$$${intersect}\:{the}\:{curve}\:{f}\left({x}\right)\:\Rightarrow{no}\:{root}. \\ $$$$ \\ $$$${case}\:\mathrm{2}:\:{a}=\mathrm{2},\:{the}\:{lowest}\:{point}\:{of}\:{g}\left({x}\right)\: \\ $$$${coincides}\:{with}\:{the}\:{topmost}\:{point}\:{of} \\ $$$${f}\left({x}\right),\:{one}\:{intersection}\:{point}\:\Rightarrow{one} \\ $$$${root}. \\ $$$$ \\ $$$${case}\:\mathrm{3}:\:−\mathrm{4}\leqslant{a}<\mathrm{2},\:{g}\left({x}\right)\:{intersects}\:{with} \\ $$$${f}\left({x}\right)\:{at}\:{two}\:{points}\:\Rightarrow{two}\:{roots}. \\ $$$$ \\ $$$${case}\:\mathrm{4}:\:{a}=−\mathrm{4},\:{y}={x}^{\mathrm{2}} −\mathrm{4},\:{y}=\mathrm{0}\:\Rightarrow{x}=\pm\mathrm{2}. \\ $$$${f}\left({x}\right)\:{intersects}\:{with}\:{g}\left({x}\right)\:{at}\:\left(−\mathrm{2},\mathrm{0}\right)\:{and} \\ $$$$\left(\mathrm{2},\mathrm{0}\right)\Rightarrow{two}\:{roots}. \\ $$$$ \\ $$$${case}\:\mathrm{5}:\:{a}<−\mathrm{4},\:{g}\left({x}\right)\:{is}\:{too}\:{low}\:{and}\:{can}'{t} \\ $$$${intersect}\:{with}\:{f}\left({x}\right)\Rightarrow{no}\:{root}. \\ $$
Commented by mr W last updated on 15/Feb/20
Commented by Power last updated on 15/Feb/20
thank you sir
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by mr W last updated on 15/Feb/20
is this a valid proof according to you?
$${is}\:{this}\:{a}\:{valid}\:{proof}\:{according}\:{to}\:{you}? \\ $$
Commented by Power last updated on 15/Feb/20
yes sir
$$\mathrm{yes}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *