Menu Close

Question-81804




Question Number 81804 by ajfour last updated on 15/Feb/20
Commented by ajfour last updated on 15/Feb/20
If tension in string, T=((mg)/5)  and rod rests in equilibrium,  find length of string.
Iftensioninstring,T=mg5androdrestsinequilibrium,findlengthofstring.
Answered by mr W last updated on 15/Feb/20
Commented by mr W last updated on 16/Feb/20
β+θ=(π/2)−α  ⇒β=(π/2)−(θ+α)  γ+θ=(π/2)+α  ⇒γ=(π/2)−(θ−α)    ((BD)/(sin γ))=((DC)/(sin β))=((BC)/(sin 2θ))  BD=((L sin γ)/(2 sin 2θ))=((L cos (θ−α))/(2 sin 2θ))  DC=((L sin β)/(2 sin 2θ))=((L cos (θ+α))/(2 sin 2θ))  l=BD+DC=((L[cos (θ−α)+cos (θ+α)])/(2 sin 2θ))  ⇒l=((L cos α)/(2 sin θ))   ...(iii)    BD sin θ=e cos α  ((L cos (θ−α) sin θ)/(2 sin 2θ))=e cos α  e=((L cos (θ−α))/(4 cos θ cos α))=(L/4)(1+tan θ tan α)    let T=((mg)/τ) with τ=5 given  F=2T cos θ  F((L/2)+e)=mg×(L/2)  ⇒3 cos θ+sin θ tan α=τ   ...(i)    ((L sin α)/2)+BD×cos θ=h  2 sin α+((cos (θ−α))/(sin θ))=((4h)/L)  with η=(h/L)  ⇒3 sin α+((cos α)/(tan θ))=4η   ...(ii)    from (i):  (3/( (√(9+tan^2  α)))) cos θ+sin θ ((tan α)/( (√(9+tan^2  α))))=(τ/( (√(9+tan^2  α))))  cos (θ−φ)=(τ/( (√(9+tan^2  α)))) with tan φ=((tan α)/3)  ⇒θ=tan^(−1) (((tan α)/3))+cos^(−1) ((τ/( (√(9+tan^2  α)))))  put this into (ii) we can get α.    with α and θ, we get the length of  the string acc. to (iii): l=((L cos α)/(2 sin θ)).    example: τ=((mg)/T)=3, η=(h/L)=(4/5)=0.80  ⇒α=39.6988°  ⇒θ=30.9364°  ⇒l=3.7416m  ===================  if string length l is given, find T=?  from (iii) we get  ((cos α)/(sin θ))=((2l)/L)=λ  ⇒sin θ=((cos α)/λ)  put this into (ii):  3 sin α+(√(λ^2 −cos^2  α))=4η  (√(λ^2 −1+sin^2  α))=4η−3 sin α  8 sin^2  α−24η sin α+16η^2 +1−λ^2 =0  ⇒sin α=((6η−(√(2(2η^2 +λ^2 −1))))/4)  with α and θ we can get from (i):  τ=3 cos θ+sin θ tan α  ⇒τ=(1/λ)(3(√(λ^2 −1+sin^2  α))+sin α)    example: L=4m, h=3m, l=3m  η=(h/L)=(3/4)=0.75, λ=((2l)/L)=(6/4)=1.5  sin α=((6η−(√(2(2η^2 +λ^2 −1))))/4)=0.580137  ⇒τ=2.905932  ⇒T=((mg)/τ)=0.344mg
β+θ=π2αβ=π2(θ+α)γ+θ=π2+αγ=π2(θα)BDsinγ=DCsinβ=BCsin2θBD=Lsinγ2sin2θ=Lcos(θα)2sin2θDC=Lsinβ2sin2θ=Lcos(θ+α)2sin2θl=BD+DC=L[cos(θα)+cos(θ+α)]2sin2θl=Lcosα2sinθ(iii)BDsinθ=ecosαLcos(θα)sinθ2sin2θ=ecosαe=Lcos(θα)4cosθcosα=L4(1+tanθtanα)letT=mgτwithτ=5givenF=2TcosθF(L2+e)=mg×L23cosθ+sinθtanα=τ(i)Lsinα2+BD×cosθ=h2sinα+cos(θα)sinθ=4hLwithη=hL3sinα+cosαtanθ=4η(ii)from(i):39+tan2αcosθ+sinθtanα9+tan2α=τ9+tan2αcos(θϕ)=τ9+tan2αwithtanϕ=tanα3θ=tan1(tanα3)+cos1(τ9+tan2α)putthisinto(ii)wecangetα.withαandθ,wegetthelengthofthestringacc.to(iii):l=Lcosα2sinθ.example:τ=mgT=3,η=hL=45=0.80α=39.6988°θ=30.9364°l=3.7416m===================ifstringlengthlisgiven,findT=?from(iii)wegetcosαsinθ=2lL=λsinθ=cosαλputthisinto(ii):3sinα+λ2cos2α=4ηλ21+sin2α=4η3sinα8sin2α24ηsinα+16η2+1λ2=0sinα=6η2(2η2+λ21)4withαandθwecangetfrom(i):τ=3cosθ+sinθtanατ=1λ(3λ21+sin2α+sinα)example:L=4m,h=3m,l=3mη=hL=34=0.75,λ=2lL=64=1.5sinα=6η2(2η2+λ21)4=0.580137τ=2.905932T=mgτ=0.344mg
Commented by ajfour last updated on 15/Feb/20
great way Sir, its really not so  complex, thank you, i think  my solution answers well too.
greatwaySir,itsreallynotsocomplex,thankyou,ithinkmysolutionanswerswelltoo.
Commented by mr W last updated on 15/Feb/20
that′s sure sir! your solution solves  the problem also very well. many  ways lead to the same goal!
thatssuresir!yoursolutionsolvestheproblemalsoverywell.manywaysleadtothesamegoal!
Commented by mr W last updated on 16/Feb/20
for the case: l is given, find T=?  an exact solution is possible, see above.
forthecase:lisgiven,findT=?anexactsolutionispossible,seeabove.
Answered by ajfour last updated on 15/Feb/20
Commented by ajfour last updated on 15/Feb/20
I am enlisting just the eqs.  that i have:      h−((L )/2)sin θ=pcos θ    ....(i)      h−Lsin θ=qcos θ      ...(ii)      pcos α=qcos β      psin α+qsin β=(L/2)      cos α+2cos β=5cos θ            α−β = 2θ  (one of them is is dependent)  cos α+((2pcos α)/q)=5cos θ  ⇒   cos α=((5cos θ)/((1+2p/q)))          cos β=((5(p/q)cos θ)/((1+2p/q)))      p(√(1−{((5cos θ)/((1+2p/q)))}^2 ))+      q(√(1−{((5(p/q)cos θ)/((1+2p/q)))}^2 )) =(L/2)  while we have p(θ) and q(θ),  from first two eqs.  ________________________
Iamenlistingjusttheeqs.thatihave:hL2sinθ=pcosθ.(i)hLsinθ=qcosθ(ii)pcosα=qcosβpsinα+qsinβ=L2cosα+2cosβ=5cosθαβ=2θ(oneofthemisisdependent)cosα+2pcosαq=5cosθcosα=5cosθ(1+2p/q)cosβ=5(p/q)cosθ(1+2p/q)p1{5cosθ(1+2p/q)}2+q1{5(p/q)cosθ(1+2p/q)}2=L2whilewehavep(θ)andq(θ),fromfirsttwoeqs.________________________

Leave a Reply

Your email address will not be published. Required fields are marked *