Menu Close

Question-81854




Question Number 81854 by ajfour last updated on 16/Feb/20
Commented by ajfour last updated on 16/Feb/20
Find eq. of parabola using  a,b,c  in the form y=q−x^2 .
Findeq.ofparabolausinga,b,cintheformy=qx2.
Answered by mr W last updated on 16/Feb/20
Commented by mr W last updated on 16/Feb/20
an attempt...  ϕ=cos^(−1) ((a^2 +b^2 −c^2 )/(2ab))  x_B =a cos θ  y_B =a sin θ  ⇒a sin θ=q−a^2  cos^2  θ   ...(i)  x_A =b cos (θ+ϕ)=b(cos θcos ϕ−sin θsin ϕ)  y_A =b sin (θ+ϕ)=b(sin θcos ϕ+cos θsin ϕ)  ⇒b(sin θcos ϕ+cos θsin ϕ)=q−b^2 (cos θcos ϕ−sin θsin ϕ)^2     (ii)−(i):  b(sin θcos ϕ+cos θsin ϕ)−a sin θ  =a^2  cos^2  θ−b^2 (cos θcos ϕ−sin θsin ϕ)^2     we can solve this for θ and then   get q from (i):  q=a(sin θ+a^2  cos θ)
anattemptφ=cos1a2+b2c22abxB=acosθyB=asinθasinθ=qa2cos2θ(i)xA=bcos(θ+φ)=b(cosθcosφsinθsinφ)yA=bsin(θ+φ)=b(sinθcosφ+cosθsinφ)b(sinθcosφ+cosθsinφ)=qb2(cosθcosφsinθsinφ)2(ii)(i):b(sinθcosφ+cosθsinφ)asinθ=a2cos2θb2(cosθcosφsinθsinφ)2wecansolvethisforθandthengetqfrom(i):q=a(sinθ+a2cosθ)
Commented by ajfour last updated on 16/Feb/20
equivalently  let further A(bcos ψ,bsin ψ)  ⇒  a^2 sin^2 θ−asin θ+(q−a^2 )=0        b^2 sin^2 ψ−bsin ψ+(q−b^2 )=0    sin θ=(1/(2a))+(√((1/(4a^2 ))−(q/a^2 )+1))    sin ψ=(1/(2b))+(√((1/(4b^2 ))−(q/b^2 )+1))  ________________________  And   θ+ψ =          sin^(−1) {(1/(2a))+(√((1/(4a^2 ))−(q/a^2 )+1))}      +sin^(−1) {(1/(2b))+(√((1/(4b^2 ))−(q/b^2 )+1))}      =π−cos^(−1) (((a^2 +b^2 −c^2 )/(2ab)))  _________________________■
equivalentlyletfurtherA(bcosψ,bsinψ)a2sin2θasinθ+(qa2)=0b2sin2ψbsinψ+(qb2)=0sinθ=12a+14a2qa2+1sinψ=12b+14b2qb2+1________________________Andθ+ψ=sin1{12a+14a2qa2+1}+sin1{12b+14b2qb2+1}=πcos1(a2+b2c22ab)________________________◼
Commented by mr W last updated on 16/Feb/20
very nice with a final eqn. for q!
verynicewithafinaleqn.forq!

Leave a Reply

Your email address will not be published. Required fields are marked *