Question Number 81889 by rajesh4661kumar@gmail.com last updated on 16/Feb/20
Answered by john santu last updated on 16/Feb/20
$${let}\:\sqrt{{x}}\:=\:\mathrm{sin}\:{t}\:\Rightarrow{x}\:=\:\mathrm{sin}\:^{\mathrm{2}} {t} \\ $$$${dx}\:=\:\mathrm{2sin}\:{t}\:\mathrm{cos}\:{t}\:{dt}\: \\ $$$$\Rightarrow{I}\:=\:\int\:\sqrt{\frac{\mathrm{1}−\mathrm{sin}\:{t}}{\mathrm{1}+\mathrm{sin}\:{t}}\:}\:\left(\mathrm{2sin}\:{t}\:\mathrm{cos}\:{t}\:\right)\:{dt} \\ $$$$=\:\int\:\frac{\left(\mathrm{1}−\mathrm{sin}\:{t}\right)\mathrm{2sin}\:{t}\mathrm{cos}\:{t}}{\mathrm{cos}\:{t}}\:{dt} \\ $$$$=\:\int\:\left(\mathrm{1}−\mathrm{sin}\:{t}\right)\mathrm{2sin}\:{t}\:{dt} \\ $$$$=\:\int\:\mathrm{2sin}\:{t}−\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:\mathrm{2}{t}\right)\:{dt} \\ $$$$=\:−\mathrm{2cos}\:{t}−{t}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\mathrm{2}{t}\:+{c} \\ $$$$=\:−\mathrm{2}\sqrt{\mathrm{1}−{x}}\:−\mathrm{sin}^{−\mathrm{1}} \left(\sqrt{{x}}\right)+\sqrt{{x}−{x}^{\mathrm{2}} }\:+{c} \\ $$