Menu Close

Question-81911




Question Number 81911 by jagoll last updated on 16/Feb/20
Commented by jagoll last updated on 16/Feb/20
a_(n+1)  = ((3a_n +1)/2)   a_(n+1)  +A = A+((3a_n +1)/2)=((3a_n +2A+1)/2)  a_(n+1) +B = B +((3a_n +1)/2)= ((3a_n +2B+1)/2)  ((a_(n+1) +A)/(a_(n+1) +B)) = ((3a_n +2A+1)/(3a_n +2B+1))  ((a_(n+1) +A)/(a_(n+1) +B)) = (3/3)×((a_n +((2A+1)/3))/(a_n +((2B+1)/3)))  A= ((2A+1)/3) ⇒ A=1  B = 1 . i have trouble
$${a}_{{n}+\mathrm{1}} \:=\:\frac{\mathrm{3}{a}_{{n}} +\mathrm{1}}{\mathrm{2}}\: \\ $$$${a}_{{n}+\mathrm{1}} \:+{A}\:=\:{A}+\frac{\mathrm{3}{a}_{{n}} +\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{3}{a}_{{n}} +\mathrm{2}{A}+\mathrm{1}}{\mathrm{2}} \\ $$$${a}_{{n}+\mathrm{1}} +{B}\:=\:{B}\:+\frac{\mathrm{3}{a}_{{n}} +\mathrm{1}}{\mathrm{2}}=\:\frac{\mathrm{3}{a}_{{n}} +\mathrm{2}{B}+\mathrm{1}}{\mathrm{2}} \\ $$$$\frac{{a}_{{n}+\mathrm{1}} +{A}}{{a}_{{n}+\mathrm{1}} +{B}}\:=\:\frac{\mathrm{3}{a}_{{n}} +\mathrm{2}{A}+\mathrm{1}}{\mathrm{3}{a}_{{n}} +\mathrm{2}{B}+\mathrm{1}} \\ $$$$\frac{{a}_{{n}+\mathrm{1}} +{A}}{{a}_{{n}+\mathrm{1}} +{B}}\:=\:\frac{\mathrm{3}}{\mathrm{3}}×\frac{{a}_{{n}} +\frac{\mathrm{2}{A}+\mathrm{1}}{\mathrm{3}}}{{a}_{{n}} +\frac{\mathrm{2}{B}+\mathrm{1}}{\mathrm{3}}} \\ $$$${A}=\:\frac{\mathrm{2}{A}+\mathrm{1}}{\mathrm{3}}\:\Rightarrow\:{A}=\mathrm{1} \\ $$$${B}\:=\:\mathrm{1}\:.\:{i}\:{have}\:{trouble} \\ $$
Commented by jagoll last updated on 16/Feb/20
hahaha..what wrong this my work?
$${hahaha}..{what}\:{wrong}\:{this}\:{my}\:{work}? \\ $$
Commented by mr W last updated on 16/Feb/20
the tactic with a_(n+1) +A and a_(n+1) +B  is due to the fact that we have a_n  in  a_(n+1) =((...a_n +....)/(...a_n +...))  you can not apply this tactic for other  cases.
$${the}\:{tactic}\:{with}\:{a}_{{n}+\mathrm{1}} +{A}\:{and}\:{a}_{{n}+\mathrm{1}} +{B} \\ $$$${is}\:{due}\:{to}\:{the}\:{fact}\:{that}\:{we}\:{have}\:{a}_{{n}} \:{in} \\ $$$${a}_{{n}+\mathrm{1}} =\frac{…{a}_{{n}} +….}{…{a}_{{n}} +…} \\ $$$${you}\:{can}\:{not}\:{apply}\:{this}\:{tactic}\:{for}\:{other} \\ $$$${cases}. \\ $$
Commented by jagoll last updated on 17/Feb/20
okay sir thank you
$${okay}\:{sir}\:{thank}\:{you} \\ $$
Answered by mr W last updated on 16/Feb/20
a_(n+1) =(3/2)a_n +(1/2)  a_(n+1) +A=(3/2)a_n +(1/2)+A  a_(n+1) +A=(3/2)(a_n +(1/3)+((2A)/3))  ⇒A=^(!) (1/3)+((2A)/3)  ⇒A=1  ⇒a_(n+1) +1=(3/2)(a_n +1)  let b_n =a_n +1  ⇒b_(n+1) =(3/2)b_n  ← it′s a GP  b_1 =a_1 +1=2+1=3  ⇒b_n =b_1 ((3/2))^(n−1) =3((3/2))^(n−1) =(3^n /2^(n−1) )=a_n +1  ⇒a_n =(3^n /2^(n−1) )−1
$${a}_{{n}+\mathrm{1}} =\frac{\mathrm{3}}{\mathrm{2}}{a}_{{n}} +\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${a}_{{n}+\mathrm{1}} +{A}=\frac{\mathrm{3}}{\mathrm{2}}{a}_{{n}} +\frac{\mathrm{1}}{\mathrm{2}}+{A} \\ $$$${a}_{{n}+\mathrm{1}} +{A}=\frac{\mathrm{3}}{\mathrm{2}}\left({a}_{{n}} +\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{2}{A}}{\mathrm{3}}\right) \\ $$$$\Rightarrow{A}\overset{!} {=}\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{2}{A}}{\mathrm{3}} \\ $$$$\Rightarrow{A}=\mathrm{1} \\ $$$$\Rightarrow{a}_{{n}+\mathrm{1}} +\mathrm{1}=\frac{\mathrm{3}}{\mathrm{2}}\left({a}_{{n}} +\mathrm{1}\right) \\ $$$${let}\:{b}_{{n}} ={a}_{{n}} +\mathrm{1} \\ $$$$\Rightarrow{b}_{{n}+\mathrm{1}} =\frac{\mathrm{3}}{\mathrm{2}}{b}_{{n}} \:\leftarrow\:{it}'{s}\:{a}\:{GP} \\ $$$${b}_{\mathrm{1}} ={a}_{\mathrm{1}} +\mathrm{1}=\mathrm{2}+\mathrm{1}=\mathrm{3} \\ $$$$\Rightarrow{b}_{{n}} ={b}_{\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{{n}−\mathrm{1}} =\mathrm{3}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{{n}−\mathrm{1}} =\frac{\mathrm{3}^{{n}} }{\mathrm{2}^{{n}−\mathrm{1}} }={a}_{{n}} +\mathrm{1} \\ $$$$\Rightarrow{a}_{{n}} =\frac{\mathrm{3}^{{n}} }{\mathrm{2}^{{n}−\mathrm{1}} }−\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *