Menu Close

Question-81980




Question Number 81980 by Hassen_Timol last updated on 17/Feb/20
Commented by Hassen_Timol last updated on 17/Feb/20
What are the values of these 2 numbers please?
$$\mathrm{What}\:\mathrm{are}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\mathrm{these}\:\mathrm{2}\:\mathrm{numbers}\:\mathrm{please}? \\ $$
Commented by Hassen_Timol last updated on 17/Feb/20
May you give a proof for it, please?
$$\mathrm{May}\:\mathrm{you}\:\mathrm{give}\:\mathrm{a}\:\mathrm{proof}\:\mathrm{for}\:\mathrm{it},\:\mathrm{please}? \\ $$
Answered by $@ty@m123 last updated on 17/Feb/20
x=(1/(1+x))  x^2 +x−1=0  x=((−1±(√(1+4)))/2)  x=((−1+(√5))/2) ...(1)  y=(√(1+y))  y^2 −y−1=0  y=((1±(√(1+4)))/2)=((1±(√5))/2)
$${x}=\frac{\mathrm{1}}{\mathrm{1}+{x}} \\ $$$${x}^{\mathrm{2}} +{x}−\mathrm{1}=\mathrm{0} \\ $$$${x}=\frac{−\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{4}}}{\mathrm{2}} \\ $$$${x}=\frac{−\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:…\left(\mathrm{1}\right) \\ $$$${y}=\sqrt{\mathrm{1}+{y}} \\ $$$${y}^{\mathrm{2}} −{y}−\mathrm{1}=\mathrm{0} \\ $$$${y}=\frac{\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{4}}}{\mathrm{2}}=\frac{\mathrm{1}\pm\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$
Commented by mr W last updated on 17/Feb/20
y>0, therefore y=((1+(√5))/2) only.
$${y}>\mathrm{0},\:{therefore}\:{y}=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:{only}. \\ $$
Commented by Hassen_Timol last updated on 17/Feb/20
Thank you very much!!!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}!!! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *