Menu Close

Question-81983




Question Number 81983 by oyemi kemewari last updated on 17/Feb/20
Commented by jagoll last updated on 17/Feb/20
L−D or L.D?
$${L}−{D}\:{or}\:{L}.{D}? \\ $$
Commented by oyemi kemewari last updated on 17/Feb/20
l-d
Commented by john santu last updated on 17/Feb/20
sin θ = (h/L) , cos θ = (D/L)  ⇒D = L cos θ   L−D = L−Lcos θ = L(1−cos θ)  = ((L(1−cos^2 θ))/(1+cos θ)) = ((L (h^2 /L^2 ))/(1+(D/L))) = (h^2 /L)×(L/(L+D))  = (h^2 /(L+D))   tobe continue
$$\mathrm{sin}\:\theta\:=\:\frac{{h}}{{L}}\:,\:\mathrm{cos}\:\theta\:=\:\frac{{D}}{{L}} \\ $$$$\Rightarrow{D}\:=\:{L}\:\mathrm{cos}\:\theta\: \\ $$$${L}−{D}\:=\:{L}−{L}\mathrm{cos}\:\theta\:=\:{L}\left(\mathrm{1}−\mathrm{cos}\:\theta\right) \\ $$$$=\:\frac{{L}\left(\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} \theta\right)}{\mathrm{1}+\mathrm{cos}\:\theta}\:=\:\frac{{L}\:\frac{{h}^{\mathrm{2}} }{{L}^{\mathrm{2}} }}{\mathrm{1}+\frac{{D}}{{L}}}\:=\:\frac{{h}^{\mathrm{2}} }{{L}}×\frac{{L}}{{L}+{D}} \\ $$$$=\:\frac{{h}^{\mathrm{2}} }{{L}+{D}}\: \\ $$$${tobe}\:{continue} \\ $$$$ \\ $$
Commented by mr W last updated on 17/Feb/20
question is simply wrong!  L−D=(h^2 /(2L)) can never be true!
$${question}\:{is}\:{simply}\:{wrong}! \\ $$$${L}−{D}=\frac{{h}^{\mathrm{2}} }{\mathrm{2}{L}}\:{can}\:{never}\:{be}\:{true}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *