Menu Close

Question-82057




Question Number 82057 by ajfour last updated on 17/Feb/20
Commented by ajfour last updated on 17/Feb/20
The plane diving at speed u drops  a ball which upon one bounce  collides with the plane when  it reaches its maximum height.  Find the declination of u^�  from  horizontal.
Theplanedivingatspeedudropsaballwhichupononebouncecollideswiththeplanewhenitreachesitsmaximumheight.Findthedeclinationofu¯fromhorizontal.
Answered by mr W last updated on 18/Feb/20
Commented by mr W last updated on 18/Feb/20
e(√(2gh+(u sin θ)^2 ))=(√(2gh_2 ))  ⇒h_2 =e^2 (1+((u^2 sin^2  θ)/(2gh)))h  t=(((√(u^2 sin^2  θ+2gh))−u sin θ+(√(2gh_2 )))/g)  t=(L/(u cos θ))=(h_1 /(tan θ u cos θ))=((h−h_2 )/(u sin θ))  ⇒L=(1/(tan θ))(1−e^2 −((e^2 u^2 sin^2  θ)/(2gh)))h    (((√(u^2 sin^2  θ+2gh))−u sin θ+(√(2gh_2 )))/g)=(h/(u sin θ))−(h_2 /(u sin θ))  (√(u^2 sin^2  θ+2gh))−u sin θ+(√(2ghe^2 (1+((u^2 sin^2  θ)/(2gh)))))=((gh)/(u sin θ))−((gh)/(u sin θ))e^2 (1+((u^2 sin^2  θ)/(2gh)))  (1+e)(√(u^2 sin^2  θ+2gh))=(((1−e^2 )gh)/(u sin θ))+(((2−e^2 )u sin θ)/2)  2(1+e)(√(1+((2gh)/(u^2 sin^2  θ))))=(((1−e^2 )2gh)/(u^2  sin^2  θ))+2−e^2   let λ=((2gh)/(u^2 sin^2  θ))  2(1+e)(√(1+λ))=(1−e^2 )λ+2−e^2   (1−e^2 )^2 λ^2 −2e(1+e)(4+e−e^2 )λ−e(8+7e−e^3 )=0  λ=((e(4+e−e^2 )+(√(e(8+7e+2e^2 −e^3 ))))/((1+e)(1−e)^2 ))  ⇒((2gh)/(u^2 sin^2  θ))=((e(4+e−e^2 )+(√(e(8+7e+2e^2 −e^3 ))))/((1+e)(1−e)^2 ))  ⇒θ=sin^(−1) [(((1−e)(√(1+e)))/( (√(e(4+e−e^2 )+(√(e(8+7e+2e^2 −e^3 )))))))(√((2gh)/u^2 ))]    example: e=0.5  θ≈sin^(−1) (0.286716(√((2gh)/u^2 )))
e2gh+(usinθ)2=2gh2h2=e2(1+u2sin2θ2gh)ht=u2sin2θ+2ghusinθ+2gh2gt=Lucosθ=h1tanθucosθ=hh2usinθL=1tanθ(1e2e2u2sin2θ2gh)hu2sin2θ+2ghusinθ+2gh2g=husinθh2usinθu2sin2θ+2ghusinθ+2ghe2(1+u2sin2θ2gh)=ghusinθghusinθe2(1+u2sin2θ2gh)(1+e)u2sin2θ+2gh=(1e2)ghusinθ+(2e2)usinθ22(1+e)1+2ghu2sin2θ=(1e2)2ghu2sin2θ+2e2letλ=2ghu2sin2θ2(1+e)1+λ=(1e2)λ+2e2(1e2)2λ22e(1+e)(4+ee2)λe(8+7ee3)=0λ=e(4+ee2)+e(8+7e+2e2e3)(1+e)(1e)22ghu2sin2θ=e(4+ee2)+e(8+7e+2e2e3)(1+e)(1e)2θ=sin1[(1e)1+ee(4+ee2)+e(8+7e+2e2e3)2ghu2]example:e=0.5θsin1(0.2867162ghu2)
Commented by ajfour last updated on 18/Feb/20
Very Nice, Sir. Awfully Good!
VeryNice,Sir.AwfullyGood!
Commented by mr W last updated on 18/Feb/20
Commented by mr W last updated on 18/Feb/20
Commented by mr W last updated on 18/Feb/20
Answered by ajfour last updated on 18/Feb/20
tan θ=((h−H)/(a+b))     .....(i)  e^2 v_y ^2 =e^2 (u^2 sin^2 θ+2gh)  H=((e^2 v_y ^2 )/(2g))=((e^2 (u^2 sin^2 θ+2gh))/(2g))  (usin θ)t_1 +((gt_1 ^2 )/2)=h  ⇒ t_1 =−((usin θ)/g)+(√(((u^2 sin^2 θ)/g^2 )+((2h)/g)))   &     t_2 =((ev_y )/g)=e(√(((u^2 sin^2 θ)/g^2 )+((2h)/g)))  a+b=(ucos θ)(t_1 +t_2 )  from ..(i)  (tan θ)(a+b)=h−H  usin θ{−((usin θ)/g)+(√(((u^2 sin^2 θ)/g^2 )+((2h)/g)))        +e(√(((u^2 sin^2 θ)/g^2 )+((2h)/g))) }       = h−((e^2 (u^2 sin^2 θ+2gh))/(2g))  let   ((usin θ)/g)=x,  ((2h)/g)=c  ⇒   x{−x+(√(x^2 +c))+e(√(x^2 +c)) }           = (c/2)−(e^2 /2)(x^2 +c)  ⇒  {x^2 (1−(e^2 /2))+(c/2)(1−e^2 )}^2          = x^2 (1+e)^2 (x^2 +c)  For e=1/2 , also let x^2 /c = z  {(7/8)z+(3/8)}^2 =(9/4)z(z+1)  49z^2 +42z+9=144z^2 +144z  95z^2 +102z−9=0  z=−((51)/(95))+(√((((51)/(95)))^2 +((9/(95)))))    ≈0.08197636    ⇒   (((usin θ)/g))^2 =((2h)/g)×0.08197636    sin θ=((√(2gh))/u)×0.286315
tanθ=hHa+b..(i)e2vy2=e2(u2sin2θ+2gh)H=e2vy22g=e2(u2sin2θ+2gh)2g(usinθ)t1+gt122=ht1=usinθg+u2sin2θg2+2hg&t2=evyg=eu2sin2θg2+2hga+b=(ucosθ)(t1+t2)from..(i)(tanθ)(a+b)=hHusinθ{usinθg+u2sin2θg2+2hg+eu2sin2θg2+2hg}=he2(u2sin2θ+2gh)2gletusinθg=x,2hg=cx{x+x2+c+ex2+c}=c2e22(x2+c){x2(1e22)+c2(1e2)}2=x2(1+e)2(x2+c)Fore=1/2,alsoletx2/c=z{78z+38}2=94z(z+1)49z2+42z+9=144z2+144z95z2+102z9=0z=5195+(5195)2+(995)0.08197636(usinθg)2=2hg×0.08197636sinθ=2ghu×0.286315
Commented by ajfour last updated on 18/Feb/20
Yes sir, i agree, i shall reexamine  this one later, i intend to try to  obtain s_(max) , s_(min)   of our eql.△ Q  presently..
Yessir,iagree,ishallreexaminethisonelater,iintendtotrytoobtainsmax,sminofoureql.Qpresently..
Commented by mr W last updated on 18/Feb/20
our results differ from each other.  i can′t say where my or your error is.  i graphed my result for various cases,  both curves meet exactly on a point  on the x−axis, so my result seems to  be ok.
ourresultsdifferfromeachother.icantsaywheremyoryourerroris.igraphedmyresultforvariouscases,bothcurvesmeetexactlyonapointonthexaxis,somyresultseemstobeok.

Leave a Reply

Your email address will not be published. Required fields are marked *