Menu Close

Question-82084




Question Number 82084 by oyemi kemewari last updated on 18/Feb/20
Commented by john santu last updated on 18/Feb/20
(1/(2(2^2 −1)))+(1/(3(3^2 −1)))+(1/(4(4^2 −1)))+...  Σ_(k=2) ^∞  (1/(k(k^2 −1))) = Σ_(k=1) ^∞  (A/k)+(B/(k−1))+(C/(k+1))  you can get the result
$$\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{2}^{\mathrm{2}} −\mathrm{1}\right)}+\frac{\mathrm{1}}{\mathrm{3}\left(\mathrm{3}^{\mathrm{2}} −\mathrm{1}\right)}+\frac{\mathrm{1}}{\mathrm{4}\left(\mathrm{4}^{\mathrm{2}} −\mathrm{1}\right)}+… \\ $$$$\underset{{k}=\mathrm{2}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{k}\left({k}^{\mathrm{2}} −\mathrm{1}\right)}\:=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{A}}{{k}}+\frac{{B}}{{k}−\mathrm{1}}+\frac{{C}}{{k}+\mathrm{1}} \\ $$$${you}\:{can}\:{get}\:{the}\:{result} \\ $$
Commented by john santu last updated on 18/Feb/20
Σ_(k=2) ^∞  (1/(2(k+1))) + (1/(2(k−1)))− (1/k)
$$\underset{{k}=\mathrm{2}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{2}\left({k}+\mathrm{1}\right)}\:+\:\frac{\mathrm{1}}{\mathrm{2}\left({k}−\mathrm{1}\right)}−\:\frac{\mathrm{1}}{{k}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *