Menu Close

Question-82131




Question Number 82131 by mr W last updated on 18/Feb/20
Commented by ajfour last updated on 18/Feb/20
Commented by mr W last updated on 18/Feb/20
Find the side length s of the inscribed  equilateral triangle(s) in a given  triangle with side lengthes a, b, c.
$${Find}\:{the}\:{side}\:{length}\:{s}\:{of}\:{the}\:{inscribed} \\ $$$${equilateral}\:{triangle}\left({s}\right)\:{in}\:{a}\:{given} \\ $$$${triangle}\:{with}\:{side}\:{lengthes}\:{a},\:{b},\:{c}. \\ $$
Commented by ajfour last updated on 18/Feb/20
Sir, i am wondering about the  locus of the centroid of the  inscribed equilateral △.
$${Sir},\:{i}\:{am}\:{wondering}\:{about}\:{the} \\ $$$${locus}\:{of}\:{the}\:{centroid}\:{of}\:{the} \\ $$$${inscribed}\:{equilateral}\:\bigtriangleup. \\ $$
Commented by mr W last updated on 18/Feb/20
what can be said about the locus?
$${what}\:{can}\:{be}\:{said}\:{about}\:{the}\:{locus}? \\ $$
Answered by mr W last updated on 19/Feb/20
Part I:   Find the maximum equilateral s_(max)   ∠A=α, ∠B=β, ∠C=γ    if α=β=γ, then it′s clear that the  maximum equilateral is the triangle  itself, i.e. s_(max) =a(=b=c). otherwise  we will have at least one angle which  is larger than 60°.    let′s assume β>γ>α. it′s clear that  β>60°. we have two cases:  case 1: β>γ>α, γ<60°  case 2: β>γ>α, γ≥60°
$${Part}\:{I}:\: \\ $$$${Find}\:{the}\:{maximum}\:{equilateral}\:{s}_{{max}} \\ $$$$\angle{A}=\alpha,\:\angle{B}=\beta,\:\angle{C}=\gamma \\ $$$$ \\ $$$${if}\:\alpha=\beta=\gamma,\:{then}\:{it}'{s}\:{clear}\:{that}\:{the} \\ $$$${maximum}\:{equilateral}\:{is}\:{the}\:{triangle} \\ $$$${itself},\:{i}.{e}.\:{s}_{{max}} ={a}\left(={b}={c}\right).\:{otherwise} \\ $$$${we}\:{will}\:{have}\:{at}\:{least}\:{one}\:{angle}\:{which} \\ $$$${is}\:{larger}\:{than}\:\mathrm{60}°. \\ $$$$ \\ $$$${let}'{s}\:{assume}\:\beta>\gamma>\alpha.\:{it}'{s}\:{clear}\:{that} \\ $$$$\beta>\mathrm{60}°.\:{we}\:{have}\:{two}\:{cases}: \\ $$$${case}\:\mathrm{1}:\:\beta>\gamma>\alpha,\:\gamma<\mathrm{60}° \\ $$$${case}\:\mathrm{2}:\:\beta>\gamma>\alpha,\:\gamma\geqslant\mathrm{60}° \\ $$
Commented by mr W last updated on 19/Feb/20
Commented by mr W last updated on 19/Feb/20
Case 1:  it′s clear the red equilateral is the  maximum.  (s_(max) /(sin γ))=(a/(sin (γ+β−60°)))  ⇒s_(max) =((a sin γ)/(sin (β+γ−60°)))
$${Case}\:\mathrm{1}: \\ $$$${it}'{s}\:{clear}\:{the}\:{red}\:{equilateral}\:{is}\:{the} \\ $$$${maximum}. \\ $$$$\frac{{s}_{{max}} }{\mathrm{sin}\:\gamma}=\frac{{a}}{\mathrm{sin}\:\left(\gamma+\beta−\mathrm{60}°\right)} \\ $$$$\Rightarrow{s}_{{max}} =\frac{{a}\:\mathrm{sin}\:\gamma}{\mathrm{sin}\:\left(\beta+\gamma−\mathrm{60}°\right)} \\ $$
Commented by mr W last updated on 19/Feb/20
Commented by mr W last updated on 20/Feb/20
Case 2:  blue equilateral with s_(blue)   (s_(blue) /(sin γ))=(a/(sin (γ+β−60°)))  ⇒s_(blue) =((a sin γ)/(sin (γ+β−60°)))  similarly  ⇒s_(red) =((a sin β)/(sin (β+γ−60°)))  since β>γ, s_(red) >s_(blue) .  ⇒s_(max) =((a sin β)/(sin (β+γ−60°)))    to be exact and for all cases:  if ∣90°−β∣<∣90°−γ∣, then  ⇒s_(max) =((a sin β)/(sin (β+γ−60°)))=((a sin β)/(sin (120°−α)))  if ∣90°−β∣>∣90°−γ∣, then  ⇒s_(max) =((a sin γ)/(sin (β+γ−60°)))=((a sin γ)/(sin (120°−α)))  i.e.  s_(max) =((a max(sin β, sin γ))/(cos (30°−α)))
$${Case}\:\mathrm{2}: \\ $$$${blue}\:{equilateral}\:{with}\:{s}_{{blue}} \\ $$$$\frac{{s}_{{blue}} }{\mathrm{sin}\:\gamma}=\frac{{a}}{\mathrm{sin}\:\left(\gamma+\beta−\mathrm{60}°\right)} \\ $$$$\Rightarrow{s}_{{blue}} =\frac{{a}\:\mathrm{sin}\:\gamma}{\mathrm{sin}\:\left(\gamma+\beta−\mathrm{60}°\right)} \\ $$$${similarly} \\ $$$$\Rightarrow{s}_{{red}} =\frac{{a}\:\mathrm{sin}\:\beta}{\mathrm{sin}\:\left(\beta+\gamma−\mathrm{60}°\right)} \\ $$$${since}\:\beta>\gamma,\:{s}_{{red}} >{s}_{{blue}} . \\ $$$$\Rightarrow{s}_{{max}} =\frac{{a}\:\mathrm{sin}\:\beta}{\mathrm{sin}\:\left(\beta+\gamma−\mathrm{60}°\right)} \\ $$$$ \\ $$$${to}\:{be}\:{exact}\:{and}\:{for}\:{all}\:{cases}: \\ $$$${if}\:\mid\mathrm{90}°−\beta\mid<\mid\mathrm{90}°−\gamma\mid,\:{then} \\ $$$$\Rightarrow{s}_{{max}} =\frac{{a}\:\mathrm{sin}\:\beta}{\mathrm{sin}\:\left(\beta+\gamma−\mathrm{60}°\right)}=\frac{{a}\:\mathrm{sin}\:\beta}{\mathrm{sin}\:\left(\mathrm{120}°−\alpha\right)} \\ $$$${if}\:\mid\mathrm{90}°−\beta\mid>\mid\mathrm{90}°−\gamma\mid,\:{then} \\ $$$$\Rightarrow{s}_{{max}} =\frac{{a}\:\mathrm{sin}\:\gamma}{\mathrm{sin}\:\left(\beta+\gamma−\mathrm{60}°\right)}=\frac{{a}\:\mathrm{sin}\:\gamma}{\mathrm{sin}\:\left(\mathrm{120}°−\alpha\right)} \\ $$$${i}.{e}. \\ $$$${s}_{{max}} =\frac{{a}\:{max}\left(\mathrm{sin}\:\beta,\:\mathrm{sin}\:\gamma\right)}{\mathrm{cos}\:\left(\mathrm{30}°−\alpha\right)} \\ $$
Answered by mr W last updated on 19/Feb/20
Part II  Find the minimum equilateral s_(min) .  let′s say for the given triangle ABC  with side lengthes a,b c and inner  angles α,β,γ the minimum inscribed  equilateral triangle is that one with  the side length s.  now we image that we have an  equilateral triangle with side length s.  we can construct infinite circum−  triangles with the inner angles  α,β,γ. all of these circumtriangles  are similar to each other and similar  to the given triangle ABC. it is clear  that the largest one of these circum−   triangles has exactly the same size as   the given triangle. this consideration  gives us following way to solve our  problem:  for an equilateral triangle with side  length s=1 we construct circumtriangles  with inner angles α,β,γ and find  the largest one. if the largest one  has the side lengthes a′,b′ and c′, then  we have  (s_(min) /1)=(a/(a′))=(b/(b′))=(c/(c′)).  through this way we get the side  length s_(min)  of the minimum inscribed  equilateral for the given triangle ABC.
$${Part}\:{II} \\ $$$${Find}\:{the}\:{minimum}\:{equilateral}\:{s}_{{min}} . \\ $$$${let}'{s}\:{say}\:{for}\:{the}\:{given}\:{triangle}\:{ABC} \\ $$$${with}\:{side}\:{lengthes}\:{a},{b}\:{c}\:{and}\:{inner} \\ $$$${angles}\:\alpha,\beta,\gamma\:{the}\:{minimum}\:{inscribed} \\ $$$${equilateral}\:{triangle}\:{is}\:{that}\:{one}\:{with} \\ $$$${the}\:{side}\:{length}\:{s}. \\ $$$${now}\:{we}\:{image}\:{that}\:{we}\:{have}\:{an} \\ $$$${equilateral}\:{triangle}\:{with}\:{side}\:{length}\:{s}. \\ $$$${we}\:{can}\:{construct}\:{infinite}\:{circum}− \\ $$$${triangles}\:{with}\:{the}\:{inner}\:{angles} \\ $$$$\alpha,\beta,\gamma.\:{all}\:{of}\:{these}\:{circumtriangles} \\ $$$${are}\:{similar}\:{to}\:{each}\:{other}\:{and}\:{similar} \\ $$$${to}\:{the}\:{given}\:{triangle}\:{ABC}.\:{it}\:{is}\:{clear} \\ $$$${that}\:{the}\:{largest}\:{one}\:{of}\:{these}\:{circum}−\: \\ $$$${triangles}\:{has}\:{exactly}\:{the}\:{same}\:{size}\:{as}\: \\ $$$${the}\:{given}\:{triangle}.\:{this}\:{consideration} \\ $$$${gives}\:{us}\:{following}\:{way}\:{to}\:{solve}\:{our} \\ $$$${problem}: \\ $$$${for}\:{an}\:{equilateral}\:{triangle}\:{with}\:{side} \\ $$$${length}\:{s}=\mathrm{1}\:{we}\:{construct}\:{circumtriangles} \\ $$$${with}\:{inner}\:{angles}\:\alpha,\beta,\gamma\:{and}\:{find} \\ $$$${the}\:{largest}\:{one}.\:{if}\:{the}\:{largest}\:{one} \\ $$$${has}\:{the}\:{side}\:{lengthes}\:{a}',{b}'\:{and}\:{c}',\:{then} \\ $$$${we}\:{have} \\ $$$$\frac{{s}_{{min}} }{\mathrm{1}}=\frac{{a}}{{a}'}=\frac{{b}}{{b}'}=\frac{{c}}{{c}'}. \\ $$$${through}\:{this}\:{way}\:{we}\:{get}\:{the}\:{side} \\ $$$${length}\:{s}_{{min}} \:{of}\:{the}\:{minimum}\:{inscribed} \\ $$$${equilateral}\:{for}\:{the}\:{given}\:{triangle}\:{ABC}. \\ $$
Commented by mr W last updated on 19/Feb/20
Commented by mr W last updated on 19/Feb/20
now we just need to find the largest  circumtriangle for an equilateral  triangle with side length s=1. the  circumtriangle must have the same  angles as the given triangle ABC,  namely α,β,γ.
$${now}\:{we}\:{just}\:{need}\:{to}\:{find}\:{the}\:{largest} \\ $$$${circumtriangle}\:{for}\:{an}\:{equilateral} \\ $$$${triangle}\:{with}\:{side}\:{length}\:{s}=\mathrm{1}.\:{the} \\ $$$${circumtriangle}\:{must}\:{have}\:{the}\:{same} \\ $$$${angles}\:{as}\:{the}\:{given}\:{triangle}\:{ABC}, \\ $$$${namely}\:\alpha,\beta,\gamma. \\ $$
Commented by mr W last updated on 19/Feb/20
Commented by mr W last updated on 19/Feb/20
Commented by mr W last updated on 20/Feb/20
r_A =(s/(2 sin α))=(1/(2 sin α))  r_B =(s/(2 sin β))=(1/(2 sin β))  r_C =(s/(2 sin γ))=(1/(2 sin γ))    when its vertexes lie on the three  circles with radii r_A ,r_B ,r_C  and centers  at A′,B′,C′, then the circumtriangle  always has the inner angles α,β,γ.    the maximum circumtriangle is  A′′B′′C′′. we know this is the case  when A′′D, B′′D and C′′D are the  diameters of the circles.    B′C′^2 =r_B ^2 +r_C ^2 −2r_B r_C cos (60°+90°−β+90°−γ)  B′C′^2 =r_B ^2 +r_C ^2 −2r_B r_C cos (60°+α°)  B′C′^2 =(1/4)[(1/(sin^2  β))+(1/(sin^2  γ))−((2 cos (60°+α))/(sin β sin γ))]  B′C′=(1/2)(√((1/(sin^2  β))+(1/(sin^2  γ))−((2 cos (60°+α))/(sin β sin γ))))  a′=B′′C′′=2B′C′  ⇒a′=(√((1/(sin^2  β))+(1/(sin^2  γ))−((2 cos (60°+α))/(sin β sin γ))))  similarly  ⇒b′=(√((1/(sin^2  γ))+(1/(sin^2  α))−((2 cos (60°+β))/(sin γ sin α))))  ⇒c′=(√((1/(sin^2  α))+(1/(sin^2  β))−((2 cos (60°+γ))/(sin α sin β))))    as described above,  s_(min) =(a/(a′))  s_(min) =(a/( (√((1/(sin^2  β))+(1/(sin^2  γ))−((2 cos (60°+α))/(sin β sin γ))))))  or  s_(min) =(b/( (√((1/(sin^2  γ))+(1/(sin^2  α))−((2 cos (60°+β))/(sin γ sin a))))))  or  s_(min) =(c/( (√((1/(sin^2  α))+(1/(sin^2  β))−((2 cos (60°+γ))/(sin α sin β))))))    sin α=(a/(2R)), sin β=(b/(2R)), sin γ=(c/(2R))  cos (60°+γ)=(1/2)(cos γ−(√3) sin γ)  cos (60°+γ)=(1/2)(((a^2 +b^2 −c^2 )/(2ab))−(((√3)c)/(2R)))  s_(min) =(c/( (√(((4R^2 )/a^2 )+((4R^2 )/b^2 )−((4R^2 )/(ab))(((a^2 +b^2 −c^2 )/(2ab))−(((√3)c)/(2R)))))))  s_(min) =(c/( (√(4R^2 (((a^2 +b^2 +c^2 )/(2a^2 b^2 )))+((2R(√3)c)/(ab))))))  s_(min) =(1/( (√(((2R^2 )/(a^2 b^2 c^2 ))(a^2 +b^2 +c^2 )+((2R(√3))/(abc))))))  with R=((abc)/(4Δ))  s_(min) =(1/( (√((1/(8Δ^2 ))(a^2 +b^2 +c^2 )+((√3)/(2Δ))))))  ⇒s_(min) =((2(√2)Δ)/( (√(a^2 +b^2 +c^2 +4(√3)Δ))))  with Δ=area of ΔABC.
$${r}_{{A}} =\frac{{s}}{\mathrm{2}\:\mathrm{sin}\:\alpha}=\frac{\mathrm{1}}{\mathrm{2}\:\mathrm{sin}\:\alpha} \\ $$$${r}_{{B}} =\frac{{s}}{\mathrm{2}\:\mathrm{sin}\:\beta}=\frac{\mathrm{1}}{\mathrm{2}\:\mathrm{sin}\:\beta} \\ $$$${r}_{{C}} =\frac{{s}}{\mathrm{2}\:\mathrm{sin}\:\gamma}=\frac{\mathrm{1}}{\mathrm{2}\:\mathrm{sin}\:\gamma} \\ $$$$ \\ $$$${when}\:{its}\:{vertexes}\:{lie}\:{on}\:{the}\:{three} \\ $$$${circles}\:{with}\:{radii}\:{r}_{{A}} ,{r}_{{B}} ,{r}_{{C}} \:{and}\:{centers} \\ $$$${at}\:{A}',{B}',{C}',\:{then}\:{the}\:{circumtriangle} \\ $$$${always}\:{has}\:{the}\:{inner}\:{angles}\:\alpha,\beta,\gamma. \\ $$$$ \\ $$$${the}\:{maximum}\:{circumtriangle}\:{is} \\ $$$${A}''{B}''{C}''.\:{we}\:{know}\:{this}\:{is}\:{the}\:{case} \\ $$$${when}\:{A}''{D},\:{B}''{D}\:{and}\:{C}''{D}\:{are}\:{the} \\ $$$${diameters}\:{of}\:{the}\:{circles}. \\ $$$$ \\ $$$${B}'{C}'^{\mathrm{2}} ={r}_{{B}} ^{\mathrm{2}} +{r}_{{C}} ^{\mathrm{2}} −\mathrm{2}{r}_{{B}} {r}_{{C}} \mathrm{cos}\:\left(\mathrm{60}°+\mathrm{90}°−\beta+\mathrm{90}°−\gamma\right) \\ $$$${B}'{C}'^{\mathrm{2}} ={r}_{{B}} ^{\mathrm{2}} +{r}_{{C}} ^{\mathrm{2}} −\mathrm{2}{r}_{{B}} {r}_{{C}} \mathrm{cos}\:\left(\mathrm{60}°+\alpha°\right) \\ $$$${B}'{C}'^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}}\left[\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \:\beta}+\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \:\gamma}−\frac{\mathrm{2}\:\mathrm{cos}\:\left(\mathrm{60}°+\alpha\right)}{\mathrm{sin}\:\beta\:\mathrm{sin}\:\gamma}\right] \\ $$$${B}'{C}'=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \:\beta}+\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \:\gamma}−\frac{\mathrm{2}\:\mathrm{cos}\:\left(\mathrm{60}°+\alpha\right)}{\mathrm{sin}\:\beta\:\mathrm{sin}\:\gamma}} \\ $$$${a}'={B}''{C}''=\mathrm{2}{B}'{C}' \\ $$$$\Rightarrow{a}'=\sqrt{\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \:\beta}+\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \:\gamma}−\frac{\mathrm{2}\:\mathrm{cos}\:\left(\mathrm{60}°+\alpha\right)}{\mathrm{sin}\:\beta\:\mathrm{sin}\:\gamma}} \\ $$$${similarly} \\ $$$$\Rightarrow{b}'=\sqrt{\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \:\gamma}+\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \:\alpha}−\frac{\mathrm{2}\:\mathrm{cos}\:\left(\mathrm{60}°+\beta\right)}{\mathrm{sin}\:\gamma\:\mathrm{sin}\:\alpha}} \\ $$$$\Rightarrow{c}'=\sqrt{\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \:\alpha}+\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \:\beta}−\frac{\mathrm{2}\:\mathrm{cos}\:\left(\mathrm{60}°+\gamma\right)}{\mathrm{sin}\:\alpha\:\mathrm{sin}\:\beta}} \\ $$$$ \\ $$$${as}\:{described}\:{above}, \\ $$$${s}_{{min}} =\frac{{a}}{{a}'} \\ $$$${s}_{{min}} =\frac{{a}}{\:\sqrt{\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \:\beta}+\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \:\gamma}−\frac{\mathrm{2}\:\mathrm{cos}\:\left(\mathrm{60}°+\alpha\right)}{\mathrm{sin}\:\beta\:\mathrm{sin}\:\gamma}}} \\ $$$${or} \\ $$$${s}_{{min}} =\frac{{b}}{\:\sqrt{\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \:\gamma}+\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \:\alpha}−\frac{\mathrm{2}\:\mathrm{cos}\:\left(\mathrm{60}°+\beta\right)}{\mathrm{sin}\:\gamma\:\mathrm{sin}\:{a}}}} \\ $$$${or} \\ $$$${s}_{{min}} =\frac{{c}}{\:\sqrt{\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \:\alpha}+\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} \:\beta}−\frac{\mathrm{2}\:\mathrm{cos}\:\left(\mathrm{60}°+\gamma\right)}{\mathrm{sin}\:\alpha\:\mathrm{sin}\:\beta}}} \\ $$$$ \\ $$$$\mathrm{sin}\:\alpha=\frac{{a}}{\mathrm{2}{R}},\:\mathrm{sin}\:\beta=\frac{{b}}{\mathrm{2}{R}},\:\mathrm{sin}\:\gamma=\frac{{c}}{\mathrm{2}{R}} \\ $$$$\mathrm{cos}\:\left(\mathrm{60}°+\gamma\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{cos}\:\gamma−\sqrt{\mathrm{3}}\:\mathrm{sin}\:\gamma\right) \\ $$$$\mathrm{cos}\:\left(\mathrm{60}°+\gamma\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{2}{ab}}−\frac{\sqrt{\mathrm{3}}{c}}{\mathrm{2}{R}}\right) \\ $$$${s}_{{min}} =\frac{{c}}{\:\sqrt{\frac{\mathrm{4}{R}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{\mathrm{4}{R}^{\mathrm{2}} }{{b}^{\mathrm{2}} }−\frac{\mathrm{4}{R}^{\mathrm{2}} }{{ab}}\left(\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{2}{ab}}−\frac{\sqrt{\mathrm{3}}{c}}{\mathrm{2}{R}}\right)}} \\ $$$${s}_{{min}} =\frac{{c}}{\:\sqrt{\mathrm{4}{R}^{\mathrm{2}} \left(\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{2}{a}^{\mathrm{2}} {b}^{\mathrm{2}} }\right)+\frac{\mathrm{2}{R}\sqrt{\mathrm{3}}{c}}{{ab}}}} \\ $$$${s}_{{min}} =\frac{\mathrm{1}}{\:\sqrt{\frac{\mathrm{2}{R}^{\mathrm{2}} }{{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} }\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)+\frac{\mathrm{2}{R}\sqrt{\mathrm{3}}}{{abc}}}} \\ $$$${with}\:{R}=\frac{{abc}}{\mathrm{4}\Delta} \\ $$$${s}_{{min}} =\frac{\mathrm{1}}{\:\sqrt{\frac{\mathrm{1}}{\mathrm{8}\Delta^{\mathrm{2}} }\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}\Delta}}} \\ $$$$\Rightarrow{s}_{{min}} =\frac{\mathrm{2}\sqrt{\mathrm{2}}\Delta}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +\mathrm{4}\sqrt{\mathrm{3}}\Delta}} \\ $$$${with}\:\Delta={area}\:{of}\:\Delta{ABC}. \\ $$
Commented by mr W last updated on 19/Feb/20
example 1: a=b=c=4  sin α=sin β=sin γ=((√3)/2)  s_(min) =(4/( (√(2((2/( (√3))))^2 +((2/( (√3))))^2 ))))=2    example 2: a=3, b=4, c=5  sin α=(3/5), sin β=(4/5), sin γ=1  s_(min) =(3/( (√(((25)/(16))+1−2((1/2)×(4/5)−((√3)/2)×(3/5))×(5/4)×1))))=((12)/( (√(25+12(√3)))))  s_(min) =(4/( (√(((25)/9)+1−2((1/2)×(3/5)−((√3)/2)×(4/5))×(5/3)×1))))=((12)/( (√(25+12(√3)))))  s_(min) =(5/( (√(((25)/(16))+((25)/9)−2((1/2)×0−((√3)/2)×1)×(5/3)×(5/4)))))=((12)/( (√(25+12(√3)))))
$${example}\:\mathrm{1}:\:{a}={b}={c}=\mathrm{4} \\ $$$$\mathrm{sin}\:\alpha=\mathrm{sin}\:\beta=\mathrm{sin}\:\gamma=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$${s}_{{min}} =\frac{\mathrm{4}}{\:\sqrt{\mathrm{2}\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\right)^{\mathrm{2}} }}=\mathrm{2} \\ $$$$ \\ $$$${example}\:\mathrm{2}:\:{a}=\mathrm{3},\:{b}=\mathrm{4},\:{c}=\mathrm{5} \\ $$$$\mathrm{sin}\:\alpha=\frac{\mathrm{3}}{\mathrm{5}},\:\mathrm{sin}\:\beta=\frac{\mathrm{4}}{\mathrm{5}},\:\mathrm{sin}\:\gamma=\mathrm{1} \\ $$$${s}_{{min}} =\frac{\mathrm{3}}{\:\sqrt{\frac{\mathrm{25}}{\mathrm{16}}+\mathrm{1}−\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{4}}{\mathrm{5}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}×\frac{\mathrm{3}}{\mathrm{5}}\right)×\frac{\mathrm{5}}{\mathrm{4}}×\mathrm{1}}}=\frac{\mathrm{12}}{\:\sqrt{\mathrm{25}+\mathrm{12}\sqrt{\mathrm{3}}}} \\ $$$${s}_{{min}} =\frac{\mathrm{4}}{\:\sqrt{\frac{\mathrm{25}}{\mathrm{9}}+\mathrm{1}−\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{3}}{\mathrm{5}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}×\frac{\mathrm{4}}{\mathrm{5}}\right)×\frac{\mathrm{5}}{\mathrm{3}}×\mathrm{1}}}=\frac{\mathrm{12}}{\:\sqrt{\mathrm{25}+\mathrm{12}\sqrt{\mathrm{3}}}} \\ $$$${s}_{{min}} =\frac{\mathrm{5}}{\:\sqrt{\frac{\mathrm{25}}{\mathrm{16}}+\frac{\mathrm{25}}{\mathrm{9}}−\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{0}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}×\mathrm{1}\right)×\frac{\mathrm{5}}{\mathrm{3}}×\frac{\mathrm{5}}{\mathrm{4}}}}=\frac{\mathrm{12}}{\:\sqrt{\mathrm{25}+\mathrm{12}\sqrt{\mathrm{3}}}} \\ $$
Commented by mr W last updated on 19/Feb/20
or  s_(min) =((2(√2)Δ)/( (√(a^2 +b^2 +c^2 +4(√3)Δ))))=((12(√2))/( (√(50+24(√3)))))=((12)/( (√(25+12(√3)))))
$${or} \\ $$$${s}_{{min}} =\frac{\mathrm{2}\sqrt{\mathrm{2}}\Delta}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +\mathrm{4}\sqrt{\mathrm{3}}\Delta}}=\frac{\mathrm{12}\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{50}+\mathrm{24}\sqrt{\mathrm{3}}}}=\frac{\mathrm{12}}{\:\sqrt{\mathrm{25}+\mathrm{12}\sqrt{\mathrm{3}}}} \\ $$
Commented by ajfour last updated on 22/Feb/20
Sir, would you please let me know  the Q.# where you had proved  the concept used here for largest  cirumtriangle construction..  rest of your solution, i have   followed entirely, very clear  and clever Sir..
$$\mathrm{Sir},\:\mathrm{would}\:\mathrm{you}\:\mathrm{please}\:\mathrm{let}\:\mathrm{me}\:\mathrm{know} \\ $$$$\mathrm{the}\:\mathrm{Q}.#\:\mathrm{where}\:\mathrm{you}\:\mathrm{had}\:\mathrm{proved} \\ $$$$\mathrm{the}\:\mathrm{concept}\:\mathrm{used}\:\mathrm{here}\:\mathrm{for}\:\mathrm{largest} \\ $$$$\mathrm{cirumtriangle}\:\mathrm{construction}.. \\ $$$$\mathrm{rest}\:\mathrm{of}\:\mathrm{your}\:\mathrm{solution},\:\mathrm{i}\:\mathrm{have}\: \\ $$$$\mathrm{followed}\:\mathrm{entirely},\:\mathrm{very}\:\mathrm{clear} \\ $$$$\mathrm{and}\:\mathrm{clever}\:\mathrm{Sir}.. \\ $$
Commented by mr W last updated on 23/Feb/20
thanks for reviewing sir!  see Q60313.
$${thanks}\:{for}\:{reviewing}\:{sir}! \\ $$$${see}\:{Q}\mathrm{60313}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *