Menu Close

Question-82134




Question Number 82134 by Raxreedoroid last updated on 18/Feb/20
Commented by Raxreedoroid last updated on 18/Feb/20
if s is an arc for Circle C  and r and Radius are Radius for C  then...  s=((7π)/6)  d=((7((√6)−(√2)))/2)  h=3.5  Find r  r=?
$$\mathrm{if}\:{s}\:\mathrm{is}\:\mathrm{an}\:\mathrm{arc}\:\mathrm{for}\:\mathrm{Circle}\:\mathrm{C} \\ $$$$\mathrm{and}\:\mathrm{r}\:\mathrm{and}\:\mathrm{Radius}\:\mathrm{are}\:\mathrm{Radius}\:\mathrm{for}\:\mathrm{C} \\ $$$$\mathrm{then}… \\ $$$${s}=\frac{\mathrm{7}\pi}{\mathrm{6}} \\ $$$${d}=\frac{\mathrm{7}\left(\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}\right)}{\mathrm{2}} \\ $$$${h}=\mathrm{3}.\mathrm{5} \\ $$$$\mathrm{Find}\:\boldsymbol{{r}} \\ $$$${r}=? \\ $$
Commented by mr W last updated on 18/Feb/20
your question is wrong sir!  you should know and see that  s>d>h    but you have  s=((7π)/6)≈3.665  d=4  h=(√6)+(√2)≈3.864  i.e. d>h>^(!) s ⇒ this is impossible!
$${your}\:{question}\:{is}\:{wrong}\:{sir}! \\ $$$${you}\:{should}\:{know}\:{and}\:{see}\:{that} \\ $$$${s}>{d}>{h} \\ $$$$ \\ $$$${but}\:{you}\:{have} \\ $$$${s}=\frac{\mathrm{7}\pi}{\mathrm{6}}\approx\mathrm{3}.\mathrm{665} \\ $$$${d}=\mathrm{4} \\ $$$${h}=\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}\approx\mathrm{3}.\mathrm{864} \\ $$$${i}.{e}.\:{d}>{h}\overset{!} {>}{s}\:\Rightarrow\:{this}\:{is}\:{impossible}! \\ $$
Commented by Raxreedoroid last updated on 18/Feb/20
sorry! Here I edited the values.
$$\mathrm{sorry}!\:\mathrm{Here}\:\mathrm{I}\:\mathrm{edited}\:\mathrm{the}\:\mathrm{values}. \\ $$
Commented by mr W last updated on 18/Feb/20
to determine r, only two of s, d, h are  needed. but you have given all three  of them, that means, one of them is   probably wrong.
$${to}\:{determine}\:{r},\:{only}\:{two}\:{of}\:{s},\:{d},\:{h}\:{are} \\ $$$${needed}.\:{but}\:{you}\:{have}\:{given}\:{all}\:{three} \\ $$$${of}\:{them},\:{that}\:{means},\:{one}\:{of}\:{them}\:{is}\: \\ $$$${probably}\:{wrong}. \\ $$
Commented by Raxreedoroid last updated on 19/Feb/20
Nothing wrong I can confirm
$$\mathrm{Nothing}\:\mathrm{wrong}\:\mathrm{I}\:\mathrm{can}\:\mathrm{confirm} \\ $$
Commented by mr W last updated on 19/Feb/20
θ=(s/r)  d=2r sin (θ/2)=2r sin (s/(2r))  ⇒((7((√6)−(√2)))/2)=2r sin ((7π)/(12r))    h=r sin θ=r sin (s/r)  ⇒(7/2)=r sin ((7π)/(6r))=2r sin ((7π)/(12r)) cos ((7π)/(12r))  (1/( (√6)−(√2)))=cos ((7π)/(12r))  (((√6)+(√2))/4)=cos ((7π)/(12r))  ((7π)/(12r))=(π/(12))  ⇒r=7
$$\theta=\frac{{s}}{{r}} \\ $$$${d}=\mathrm{2}{r}\:\mathrm{sin}\:\frac{\theta}{\mathrm{2}}=\mathrm{2}{r}\:\mathrm{sin}\:\frac{{s}}{\mathrm{2}{r}} \\ $$$$\Rightarrow\frac{\mathrm{7}\left(\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}\right)}{\mathrm{2}}=\mathrm{2}{r}\:\mathrm{sin}\:\frac{\mathrm{7}\pi}{\mathrm{12}{r}} \\ $$$$ \\ $$$${h}={r}\:\mathrm{sin}\:\theta={r}\:\mathrm{sin}\:\frac{{s}}{{r}} \\ $$$$\Rightarrow\frac{\mathrm{7}}{\mathrm{2}}={r}\:\mathrm{sin}\:\frac{\mathrm{7}\pi}{\mathrm{6}{r}}=\mathrm{2}{r}\:\mathrm{sin}\:\frac{\mathrm{7}\pi}{\mathrm{12}{r}}\:\mathrm{cos}\:\frac{\mathrm{7}\pi}{\mathrm{12}{r}} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}}=\mathrm{cos}\:\frac{\mathrm{7}\pi}{\mathrm{12}{r}} \\ $$$$\frac{\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}}{\mathrm{4}}=\mathrm{cos}\:\frac{\mathrm{7}\pi}{\mathrm{12}{r}} \\ $$$$\frac{\mathrm{7}\pi}{\mathrm{12}{r}}=\frac{\pi}{\mathrm{12}} \\ $$$$\Rightarrow{r}=\mathrm{7} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *